[일반물리학실험Ⅱ] 25장. 교류회로 (예비레포트)
본 자료는 3페이지 의 미리보기를 제공합니다. 이미지를 클릭하여 주세요.
닫기
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
해당 자료는 3페이지 까지만 미리보기를 제공합니다.
3페이지 이후부터 다운로드 후 확인할 수 있습니다.

소개글

[일반물리학실험Ⅱ] 25장. 교류회로 (예비레포트)에 대한 보고서 자료입니다.

목차

1.실험제목

2.날짜, 시간

3.공동실험자 이름

4.실험목적

5.실험원리

6.실험기구 및 재료

7.실험방법 및 구상

8.참고문헌 및 출처

본문내용

계속 유지하려면 이 유도 기전력 를 제거할만한 전압 를 코일 양단에
가하지 않으면 안 된다. 와 는 서로 반대 방향이므로
즉, 전류의 위상은 전압의 위상보다 만큼 늦다. 에서 와 비교하면 는 저항 와 같은 의미를 갖는다.
D.저항-코일-축전기를 연결한 교류 회로(RLC 회로)
그림과 같이 교류전압 를 저항이 , 인덕턴스가 , 전기용량이 인 직렬회로에 가하는 경우를 생각해보자. 이 회로에서 ,, 각각에 걸리는 전압 , , 는 다음과 같다.
(25.3)
(25.4)
(25.5)
따라서 회로에 걸리는 총 교류전압 는
(25.6)
이 된다. 한편, 식 (25.2)를 식 (25.4), (25.5), (25.5)에 대입하면
(25.7)
(25.8)
(25.9)
로 주어지고, 과 은 에 대해 각각 와 의 위상차가 난다. 이들의 최대값을 벡터 도형법으로 써서 나타내면 그림 25.2와 같이 되며, 이로부터 회로에 걸리는 총 교류전압의 최대값은 다음과 같다.
(25.10)
또 식(25.7) 및 (25.8), (25.9)에서 최대 전압값은 ,
일때와 일 때의 값이므로 최대 전압값을 , , 이라 하면
(25.11)
(25.12)
(25.13)
이 된다. 여기서 직류회로의 저항에 해당되는 , 를 각각 inductive reactance , capacitive recatance 라 하며, 다음과 같다.
(25.14)
(25.15)
윗 식에서 을 Henry()로, 를 Farad()로, 를 Hertz() 로 표시하면 과 는 저항 R과 같은 단위인 ohms()으로 표시된다. 따라서 RLC회로에서 ,
,이므로 직류회로의 저항에 해당하는 교류회로의 임피던스
는 로 표현되며 식 (25.10)에 의해서
(25.16)
가 되며, 위상각는
(25.17)
이다.
6. 실험기구 및 재료
Bread Board, 멀티미터, 함수발생기, 오실로스코프, 저항, 코일(Inductor), 콘덴서(Capacitor), 전선
7. 실험방법 및 구상
a. R-L-C 회로
⑴ 교류전원으로 함수발생기(전원이 꺼진 상태)를 사용하여 Bread Board에 저항과 코일, 콘덴서를 그림 25.1와 같이 연결하여 직렬 RLC 회로를 구성한다.
⑵ 함수 발생기의 진폭 조절단자를 왼쪽 끝까지 돌려 출력 전압을 0로 맞춘 후 전원을 켠다.
♠ 전압을 측정할 때에는 멀티미터의 로터리 스위치를 교류전압 측정범위에 위치시킨 후에 소자와 병렬로 연결해야 한다. 전류를 측정할 때에는 측정하고자 하는 지점을 개방한 후 멀티미터의 로터리 스위치를 교류전류 측정범위에 위치시킨 다음 회로에 직렬로 연결하여 측정한다. 멀티미터로 측정된 전압과 전류는 실효값이다.
⑶ 출력 전압은 2.0 Volt, 진동수 는 1.0 kHz로 조정 한 다음, 멀티미터를 이용해 전압 , , ,, 전류 , 진동수 를 측정한다.
⑷ 함수 발생기의 진동수를 증가시키면서 과정 ⑶을 반복한다. 식 (25.16), (25.17)을 이용해 임피던스 와 위상차 를 계산한다.
⑸ 실험 결과로부터 실효 전류 대 진동수 , 실효전압 대 진동수 의 그래프를 그리고 공명진동수를 찾는다.
⑹ 출력 진동수 를 위 과정에서 구한 공명진동수와 가능한 차이가 큰 진동수에 설정하고 출력 전압은 0.5 Volt에 설정한 다음 멀티미터를 이용해 전압 , , ,, 전류 , 진동수 를 측정한다.
⑺ 전압을 0.5V 씩 증가시키면서 과정 ⑹을 반복 측정한다.
⑻ 식 (25.10)을 이용해 을 계산한다.
⑼ , , 의 그래프를 그린다.
⑽ 최소 제곱법을 이용해서 그래프의 기울기를 구하고 저항 , 인덕턴스 , 전기용량 임피던스 를 구한다.
⑾ 식 (25.16)을 이용해 를 계산하고 와 그래프를 이용해 구한 결과와 비교한 다.
⑿ 과 에 걸리는 전압의 위상차 를 계산한다.
⒀ 과정(7) 실험 후 오실로스코프의 [CH-1]의 입력선에 연결하고 파형을 기록한다.
⒁ 오실로스포트의 [CH-2]의 입력선에 를 차례로 연결하여 파형을 기록하고 [CH-1],[CH-2]파형 사이의 위상차도 기록한다. ([CH-1],[CH-2]의 VOLTS/DIV을 같게 둔다.)
b. R­L 회로
⑴ 교류전원으로 함수발생기(전원이 꺼진 상태)를 사용하여 Bread Board에 저항과 코일을 그림 25.3과 같이 연결하여 직렬 R­L 회로를 구성한다.
⑵ 함수발생기의 진폭 조절단자를 왼쪽 끝까지 돌려 출력 전압을 0V로 맞춘 후 전원을 켠다.
⑶ 함수발생기의 출력 전압은 0.5 Volt에, 진동수 는 1.0 kHz로 조정한 다음, 멀티미터를 이용해 전압 , 전류 진동수를 측정한다.
⑷ 출력 전압을 증가시키면서 과정 ⑶을 반복한다.
⑸ 식(25.10)을 이용해서 을 계산한다.
⑹ , 의 그래프를 그린다.
⑺ 최소 제곱법을 이용해서 그래프의 기울기를 구하고 저항 , 인덕턴스 , 임피던스 를 구한다.
⑻ 식 (25.16)을 이용해 를 계산하고 와 그래프를 이용해 구한 결과와 비교한다.
⑼ 과 에 걸리는 전압의 위상차 를 계산한다.
c. R-C 회로
⑴ 교류전원으로 함수발생기(전원이 꺼진 상태)를 사용하여 Bread Board에 저항과 콘덴서를 그림 4와 같이 연결하여 직렬 R-C 회로를 구성한다.
⑵ 함수발생기의 진폭 조절단자를 왼쪽 끝까지 돌려 출력 전압을 0V로 맞춘 후 전원을 켠다.
⑶ 출력 전압은 0.5 Volt에, 진동수 는 1.0kHz 근처에 위치시킨 다음, 멀티미터를 이용해 전압 , 전류 , 진동수 를 측정한다.
⑷ 출력 전압을 증가시키면서 과정 ⑶을 반복한다.
⑸ 식(25.10)을 이용해 을 계산하다.
⑹ , 의 그래프를 그린다.
⑺ 최소 제곱법을 이용해서 그래프의 기울기를 구하고 저항 , 전기용량 임피던스 를 구한다.
⑻ 식 (25.16)을 이용해 를 계산하고 와 그래프를 이용해 구한 결과와 비교한다.
⑼ 과 에 걸리는 전압의 위상차 를 계산한다.
8. 참고문헌 및 출처
일반물리학실험, 부산대학교 물리학 교재편찬위원회, 청범출판사, p.259~263
일반 물리학, Halliday Resnick Walker 공저, 범한서적, p.1011~1022
http://cafe.daum.net/pnuphyslee (부산대학교 일반물리학 강의 카페)
  • 가격1,300
  • 페이지수10페이지
  • 등록일2010.01.06
  • 저작시기2009.11
  • 파일형식한글(hwp)
  • 자료번호#571671
본 자료는 최근 2주간 다운받은 회원이 없습니다.
다운로드 장바구니