목차
1. 스핀 자기 쌍극자모멘트
2. 궤도 자기 쌍극자모멘트
3. 전자궤도에 관한 고리모형
2. 궤도 자기 쌍극자모멘트
3. 전자궤도에 관한 고리모형
본문내용
각운동량이 양자화되어있으므로 궤도 자기 쌍극자모멘트 또한 양자화되어있다. 즉, 식에 식을 대입하면 아래와 같은 식을 구할 수 있다.
이때 Bohr의 자기량은 의 값을 가지므로 식은 아래와 같이 변형시켜 나타낼 수 있다.
마찬가지로 원자가 외부 자기장 안에 놓여 있으면, 원자 내 각 전자의 궤도 자기 쌍극자 모멘트의 방향에 따른 퍼텐셜에너지가 생기며 그 값은 다음과 같다.
3. 전자궤도에 관한 고리모형
[그림 2]처럼 전자가 일정한 속력 로 반지름 의 경로를 반시계 방향으로 운동한다고 생각해보자. 이때 전류는 [그림 2]에서 보는 바와 같이 시계 방향으로 향한다.
여기서 는 고리로 둘러싸인 면적이다. 자기 쌍극자 모멘트의 방향은 오른손 규칙에 의해 아래 방향으로 향한다. 그리고 전자(e의 전하량을 갖음)가 원을 따라 한 바퀴 돌아오는 데 걸리는 시간이 이므로 전류에 대한 식을 나타내면 아래와 같다.
여기서 의 식이 성립되며 이것과 식을 식에 대입하면 다음과 같다.
그리고 전자의 궤도 각운동량은 아래와 같은 식으로 나타낼 수 있다. 이때 과 는 서로 수직이므로 의 식을 만족한다.
즉, 식에 식을 대입하면 다음과 같은 식을 도출해낼 수 있다.
이때 Bohr의 자기량은 의 값을 가지므로 식은 아래와 같이 변형시켜 나타낼 수 있다.
마찬가지로 원자가 외부 자기장 안에 놓여 있으면, 원자 내 각 전자의 궤도 자기 쌍극자 모멘트의 방향에 따른 퍼텐셜에너지가 생기며 그 값은 다음과 같다.
3. 전자궤도에 관한 고리모형
[그림 2]처럼 전자가 일정한 속력 로 반지름 의 경로를 반시계 방향으로 운동한다고 생각해보자. 이때 전류는 [그림 2]에서 보는 바와 같이 시계 방향으로 향한다.
여기서 는 고리로 둘러싸인 면적이다. 자기 쌍극자 모멘트의 방향은 오른손 규칙에 의해 아래 방향으로 향한다. 그리고 전자(e의 전하량을 갖음)가 원을 따라 한 바퀴 돌아오는 데 걸리는 시간이 이므로 전류에 대한 식을 나타내면 아래와 같다.
여기서 의 식이 성립되며 이것과 식을 식에 대입하면 다음과 같다.
그리고 전자의 궤도 각운동량은 아래와 같은 식으로 나타낼 수 있다. 이때 과 는 서로 수직이므로 의 식을 만족한다.
즉, 식에 식을 대입하면 다음과 같은 식을 도출해낼 수 있다.
소개글