2024년 1학기 방송통신대 기말과제물 행정계량분석)확률변수의 개념 및 확률변수와 표본평균 간의 관계를 간단히 기술하시오 확률변수 Y의 표준편차가 6일 때, 확률변수 Y에 각각 5배를 곱하여 만든 새로운 확률변수 Z의 분산값 등
본 자료는 2페이지 의 미리보기를 제공합니다. 이미지를 클릭하여 주세요.
닫기
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
해당 자료는 2페이지 까지만 미리보기를 제공합니다.
2페이지 이후부터 다운로드 후 확인할 수 있습니다.

소개글

2024년 1학기 방송통신대 기말과제물 행정계량분석)확률변수의 개념 및 확률변수와 표본평균 간의 관계를 간단히 기술하시오 확률변수 Y의 표준편차가 6일 때, 확률변수 Y에 각각 5배를 곱하여 만든 새로운 확률변수 Z의 분산값 등에 대한 보고서 자료입니다.

목차

1. 확률변수의 개념 및 확률변수와 표본평균 간의 관계를 간단히 기술하시오. (4점, 불완전한 답일 경우 그 정도에 따라 감점)
2. 확률변수 Y의 표준편차가 6일 때, 확률변수 Y에 각각 5배를 곱하여 만든 새로운 확률변수 Z의 분산값을 구하시오. (3점, 풀이과정 없이 정답만 쓰면 감점)
3. 제시한 표준정규분포표를 이용하여 확률변수 X가 평균이 31, 표준편차가 4인 정규분포를 이룰 때, 확률변수 X가 27 이하일 확률을 구하시오. (3점, 풀이과정 없이 정답만 쓰면 감점)
4. 방송대 학생 중 325명을 뽑아 신장(키)을 조사해 보았더니 평균이 171.0cm, 표준편차가 9.0cm이었다. 95% 신뢰수준에서 모집단의 평균을 추정하려고 한다. 표준오차의 값을 추정하시오. (3점, 풀이과정 없이 정답만 쓰면 감점)
5. 위 4번 과제에서 추정된 표준오차를 이용하여 모평균에 대한 신뢰구간을 추정하여 작성하시오. (3점, 풀이과정 없이 정답만 쓰면 감점)
6. 재정 투명성의 개선을 위해 공금횡령 건수에 관한 표본을 추출하고자 한다. 원하는 오차의 한계는 2건이고 과거의 경험을 통해 알고 있는 모집단의 표준편차는 10건이다. 99% 신뢰수준을 확보하기 위해 필요한 최소한의 표본의 크기를 구하시오. (3점, 풀이과정 없이 정답만 쓰면 감점)
7. 방송대 학생 181명을 표본으로 뽑아 한 학기 동안의 지역사회 참여시간을 조사하였더니 평균이 37시간이었다. 표준오차를 2.5시간이라고 가정하고, “모집단 평균이 30시간이 아니다”라는 대립가설을 세운 다음 유의수준 0.05에서 가설검정을 하려고 한다. 표준화된 통계치 값을 구하시오. (3점, 풀이과정 없이 정답만 쓰면 감점)
8. 위 7번 과제에서 구한 표준화된 통계치 값을 이용해 판정을 하고, 이 가설검정의 결론에 해당하는 문장을 직접 작성하시오. (4점, 불완전한 답일 경우 그 정도에 따라 감점)
9. 제시한 분산분석표를 이용하여 통계치 F값을 계산하시오. (3점, 풀이과정 없이 정답만 쓰면 감점)
10. 이상의 분산분석표를 활용해 유의수준 0.05에서 가설검정을 할 때, 위 9번 과제에서 구한 통계치 F값을 이용해 판정을 하고 그 결론에 해당하는 문장을 직접 작성하시오. (단, 임계치 F(4, 120) = 2.45)(4점, 불완전한 답일 경우 그 정도에 따라 감점)
11. 거주 지역을 대도시, 중소도시, 농촌으로 나눈 뒤, 무작위 표본추출을 통해 총 90명의 표본을 추출하고 그들의 학력을 조사하였더니 결과가 다음의 도수분포표와 같았다고 한다. 이 도수분포표를 이용해 χ2-검정을 실시할 때 필요한 자유도를 구하시오. (3점, 풀이과정 없이 정답만 쓰면 감점)
12. 이상의 도수분포표를 이용해 유의수준 0.05에서 가설검정을 할 때 계산한 χ2-통계치가 6.67이라면, 가설을 판정하고 그 결론에 해당하는 문장을 직접 작성하시오. (단, 이론적 χ2 = 5.991)(4점, 불완전한 답일 경우 그 정도에 따라 감점)
13. 상관분석에서 두 변수 간 상관계수가 ?0.55라고 할 때, 결정계수 값을 구하시오. (3점, 풀이과정 없이 정답만 쓰면 감점)
14. 회귀분석에서 총변동량(SST)이 200이고, 설명 안 된 변동량(SSE)이 124일 때, 결정계수 값을 구하시오. (3점, 풀이과정 없이 정답만 쓰면 감점)
15. 회귀모형에서 F-검정의 특징 및 장점을 간단히 기술하시오. (4점, 불완전한 답일 경우 그 정도에 따라 감점)
16. 참고문헌

본문내용

크다. F값이 임계치보다 크다는 것은 그룹 간에 통계적으로 유의미한 차이가 존재한다는 것을 의미한다. 따라서 집단 간의 평균에 차이가 없다는 귀무가설을 기각하고, 집단 간 평균이 모두 같지는 않다는 대립가설을 채택한다.
11. 거주 지역을 대도시, 중소도시, 농촌으로 나눈 뒤, 무작위 표본추출을 통해 총 90명의 표본을 추출하고 그들의 학력을 조사하였더니 결과가 다음의 도수분포표와 같았다고 한다. 이 도수분포표를 이용해 χ2-검정을 실시할 때 필요한 자유도를 구하시오. (3점, 풀이과정 없이 정답만 쓰면 감점)
대도시
중소도시
농촌

고졸 이하
대졸 이상
10
20
15
15
20
10
45
45

30
30
30
90
12. 이상의 도수분포표를 이용해 유의수준 0.05에서 가설검정을 할 때 계산한 χ2-통계치가 6.67이라면, 가설을 판정하고 그 결론에 해당하는 문장을 직접 작성하시오. (단, 이론적 χ2 = 5.991)(4점, 불완전한 답일 경우 그 정도에 따라 감점)
χ2-통계치가 6.67로 이론적 χ2값 5.991보다 크다. 따라서 유의수준 0.05에서 가설검정의 결론은 다음과 같다.
“학력과 거주지역은 서로 독립적이다”는 귀무가설을 기각하고, “학력과 거주지역은 서로 독립적이지 않다”는 대립가설을 채택한다. 즉, 대도시, 중소도시, 농촌 지역에 거주하는 사람들의 학력 분포에 통계적으로 유의미한 차이가 있다.
13. 상관분석에서 두 변수 간 상관계수가 0.55라고 할 때, 결정계수 값을 구하시오. (3점, 풀이과정 없이 정답만 쓰면 감점)
결정계수는 상관계수()의 제곱으로, 한 변수가 다른 변수를 설명하는 정도를 나타낸다. 상관계수를 통해 결정계수를 구할 수 있고, 반대로 결정계수를 통해 상관계수를 구할 수 있다.
14. 회귀분석에서 총변동량(SST)이 200이고, 설명 안 된 변동량(SSE)이 124일 때, 결정계수 값을 구하시오. (3점, 풀이과정 없이 정답만 쓰면 감점)
15. 회귀모형에서 F-검정의 특징 및 장점을 간단히 기술하시오. (4점, 불완전한 답일 경우 그 정도에 따라 감점)
F검정은 독립변수를 여러 개 도입한 다중회귀모형이 전체적으로 유의미한지를 알아보는 데 이용된다. 따라서 F검정에서는 도입된 각 독립변수에 해당하는 회귀계수가 모두 0이라는 귀무가설을 검정하게 된다. 즉, 귀무가설은 독립변수들이 종속변수에 대해 아무런 영향을 미치지 않는다고 가정한다. 단순회귀모형에서는 독립변수가 하나이므로 F검정은 t검정의 결과와 동일하다. F-검정은 회귀모형에 있는 모든 변수를 한 번에 테스트한다. 이는 변수가 많을 때 각각의 t-검정을 별도로 수행하는 것보다 시간을 절약해준다. 따라서 F검정은 독립변수가 여러 개인 다중회귀모형이 전체적으로 유의미한지를 알아보는 데 유용하다.
16. 참고문헌
문병기(2023), 행정계량분석, 한국방송통신대학교출판문화원.
문병기(2023). 「행정계량분석 워크북」, 개정판: 한국방송통신대학교출판문화원
박서영·이기재·이긍희·장영재(2022), 통계학개론, 한국방송통신대학교출판문화원.
  • 가격6,000
  • 페이지수7페이지
  • 등록일2024.04.15
  • 저작시기2024.04
  • 파일형식한글(hwp)
  • 자료번호#1247702
본 자료는 최근 2주간 다운받은 회원이 없습니다.
청소해
다운로드 장바구니