목차
1. 서 론
2. 입자형상의 영향을 고려한 중간모델
2.1 비구형 입자를 위한 Thiele 수의 가정
2.2 총괄반응속도식
2.3 속도파라메터의 결정법
3. 고 찰
3.2 입자형상의 변화에 의한 반응속도 변화의 메카니즘
3.3 반응속도에 미치는 광석 형상의 영향
4.결 론
2. 입자형상의 영향을 고려한 중간모델
2.1 비구형 입자를 위한 Thiele 수의 가정
2.2 총괄반응속도식
2.3 속도파라메터의 결정법
3. 고 찰
3.2 입자형상의 변화에 의한 반응속도 변화의 메카니즘
3.3 반응속도에 미치는 광석 형상의 영향
4.결 론
본문내용
hrough product layer included in
the intermediate model, (cm2/s)
Dso : Effective intraparticle diffusivity through reactant layer included in
the intermediate model, (cm2/s)
Ef, Ef': Effectiveness factor, (-)
F : Fractional reduction, (-)
kf : Mass transportation coefficient through gas film, (cm/s)
kv : Volume-based chemical reaction rate constant of Ishida-Wen's model, (s-1)
Lm : Non-spherical radius of reactant shell, (cm)
Lo : Non-spherical radius of pellet, (cm)
rm : Radius of reactant shell, (cm)
ro : Radius of pellet, (cm)
t : Reaction time, (s)
Greek letters
gamma_A
: Chemical reaction rate, (mol/cm3·s)
PHI , PHI '
: Thiele's modulus for non-spherical particle, (-)
phi_L
: Leva's shape coefficient, (the surface area of the sphere which has the same volume as a non-spherical particle)/(the surface area of the non-spherical particle), (-)
xi_m
: Dimensionless non-spherical radius of reactant shell,
xi_m
= Lm/Lo, (-)
θv: Dimensionless reaction time, (-)
θvc: Dimensionless reaction time of the 1st stage of the intermediate model, (-)
6. 참고문헌
(1) Y. Ono and T. Murayama : J. Jpn. Inst. Met, 25 (1986) 973
(2) H. W. Kang, W. S. Chung and T. Murayama : ISIJ Int., 38 (1998) 109
(3) H. W. Kang, W. S. Chung., T. Murayama and Y. Ono : ISIJ Int., 38 (1998), 324
(4) H. Y. Sohn and J. Szekely : Chem. Eng. Sci., 27 (1972) 763
(5) M. Ishida and C. Y. Wen : AIChE. J. 14 (1968) 311
(6) M. Leva : Chem. Eng. Prog., 48 (1947) 549
(7) T. Murayama and Y. Ono : Tetsu-To-Hagane 73 (1988) 1323
(8) W. E. Ranz and W. R. Marshall : Chem. Eng. Progr. 48 (1952) 1415
(9) H. W. St., Clair : Trans. Met. Soc. AIME 233 (1965) 1145
(10) H. W. Kang, U. C. Chung, W. S. Chung. I. O. Lee and Y. Ono : J. the Korean Inst. of Met. & Mater, 35(1997), 326.
CAPTION
Table 1. Characteristics of samples.
Table 2. Kinetic parameters obtained from the intermediate model considering particle shape effect.
Table 3. Condition for the calculation of the reaction curves shown in Figs. 7, 8 and 9.
Fig. 1. Conceptual diagram of Thiele's modulus for a non-spherical particle.
Fig. 2. Reduction curves for the reduction step of hematite to
magnetite with 10%CO-90%CO2 gas mixture. a) sample P2 at 900 ℃.
b) sample P5 at 900 ℃.
- Comparision of the measured reduction data with values calculated from
the intermediate model considering particle shape effect.
Fig. 3. Relation between modified Thiele's modulus
PHI
and
non-spherical radius
phi_L cdot r_o
.
Fig. 4. Relation between effectiveness factor Ef and
non-spherical radius
phi_L cdot r_o
.
Fig. 5. Relation between volume-based chemical reaction rate constant kv
and non-spherical radius
phi_L cdot r_o
.
Fig. 6. Relation between effective diffusivities through product layer Ds and in reactant zone Dso and non-spherical radius
phi_L cdot r_o
.
Fig. 7. Theoretical reduction curves for Φ values of 100 and 200.
Fig. 8. Theoretical reduction curves for Φ values of 10 and 20.
Fig. 9. Theoretical reduction curves for Φ values of 0.5, 1 and 2.
the intermediate model, (cm2/s)
Dso : Effective intraparticle diffusivity through reactant layer included in
the intermediate model, (cm2/s)
Ef, Ef': Effectiveness factor, (-)
F : Fractional reduction, (-)
kf : Mass transportation coefficient through gas film, (cm/s)
kv : Volume-based chemical reaction rate constant of Ishida-Wen's model, (s-1)
Lm : Non-spherical radius of reactant shell, (cm)
Lo : Non-spherical radius of pellet, (cm)
rm : Radius of reactant shell, (cm)
ro : Radius of pellet, (cm)
t : Reaction time, (s)
Greek letters
gamma_A
: Chemical reaction rate, (mol/cm3·s)
PHI , PHI '
: Thiele's modulus for non-spherical particle, (-)
phi_L
: Leva's shape coefficient, (the surface area of the sphere which has the same volume as a non-spherical particle)/(the surface area of the non-spherical particle), (-)
xi_m
: Dimensionless non-spherical radius of reactant shell,
xi_m
= Lm/Lo, (-)
θv: Dimensionless reaction time, (-)
θvc: Dimensionless reaction time of the 1st stage of the intermediate model, (-)
6. 참고문헌
(1) Y. Ono and T. Murayama : J. Jpn. Inst. Met, 25 (1986) 973
(2) H. W. Kang, W. S. Chung and T. Murayama : ISIJ Int., 38 (1998) 109
(3) H. W. Kang, W. S. Chung., T. Murayama and Y. Ono : ISIJ Int., 38 (1998), 324
(4) H. Y. Sohn and J. Szekely : Chem. Eng. Sci., 27 (1972) 763
(5) M. Ishida and C. Y. Wen : AIChE. J. 14 (1968) 311
(6) M. Leva : Chem. Eng. Prog., 48 (1947) 549
(7) T. Murayama and Y. Ono : Tetsu-To-Hagane 73 (1988) 1323
(8) W. E. Ranz and W. R. Marshall : Chem. Eng. Progr. 48 (1952) 1415
(9) H. W. St., Clair : Trans. Met. Soc. AIME 233 (1965) 1145
(10) H. W. Kang, U. C. Chung, W. S. Chung. I. O. Lee and Y. Ono : J. the Korean Inst. of Met. & Mater, 35(1997), 326.
CAPTION
Table 1. Characteristics of samples.
Table 2. Kinetic parameters obtained from the intermediate model considering particle shape effect.
Table 3. Condition for the calculation of the reaction curves shown in Figs. 7, 8 and 9.
Fig. 1. Conceptual diagram of Thiele's modulus for a non-spherical particle.
Fig. 2. Reduction curves for the reduction step of hematite to
magnetite with 10%CO-90%CO2 gas mixture. a) sample P2 at 900 ℃.
b) sample P5 at 900 ℃.
- Comparision of the measured reduction data with values calculated from
the intermediate model considering particle shape effect.
Fig. 3. Relation between modified Thiele's modulus
PHI
and
non-spherical radius
phi_L cdot r_o
.
Fig. 4. Relation between effectiveness factor Ef and
non-spherical radius
phi_L cdot r_o
.
Fig. 5. Relation between volume-based chemical reaction rate constant kv
and non-spherical radius
phi_L cdot r_o
.
Fig. 6. Relation between effective diffusivities through product layer Ds and in reactant zone Dso and non-spherical radius
phi_L cdot r_o
.
Fig. 7. Theoretical reduction curves for Φ values of 100 and 200.
Fig. 8. Theoretical reduction curves for Φ values of 10 and 20.
Fig. 9. Theoretical reduction curves for Φ values of 0.5, 1 and 2.
추천자료
2009년 1학기 교수학습이론과매체 중간시험과제물 C형(오수벨,가네,브루너의 교수이론)
2009년 1학기 프로모션관리 중간시험과제물 공통(POP커뮤니케이션에서의 포장효과)
2008년 2학기 인간자원개발론 중간시험과제물 공통(지식기반사회에서 인간자원개발의 중요성)
2008년 2학기 비영리조직경영론 중간시험과제물 B형(비영리의료기관)
2008년 2학기 물류관리 중간시험과제물 공통(e-SCM)
2008년 2학기 공정거래법 중간시험과제물 A형(시장지배적사업자의 지위남용행위)
2008년 1학기 프로모션관리 중간시험과제물 공통(POP커뮤니케이션에서의 포장효과)
2007년 2학기 아동복지 중간시험과제물 B형(지지적서비스)
2007년 2학기 아동복지 중간시험과제물 B형(지지적 서비스)
2007년 2학기 비영리조직경영론 중간시험과제물 C형(비영리 의료기관)
2007년 2학기 물류관리 중간시험과제물 공통(e-SCM)
2010년 1학기 조직행태론 중간시험 핵심체크
2011년 2학기 평생교육론 중간시험 핵심체크
용인대 영상문화의 이해 중간,기말 시험 및 과제