목차
1. 서 론
2. 이론적 배경
2.1 Optical Parametric Oscillation에 의한 파장가변 원리
2.2 OPO의 출력특성
2.3 Beta-barium borate의 광학적 성질
3. 공진기 구성
4. 출력 특성
4.1 OPO의 조율(tuning)
4.2 출력 에너지
4.3 선폭
5. 결 론
참고 문헌
2. 이론적 배경
2.1 Optical Parametric Oscillation에 의한 파장가변 원리
2.2 OPO의 출력특성
2.3 Beta-barium borate의 광학적 성질
3. 공진기 구성
4. 출력 특성
4.1 OPO의 조율(tuning)
4.2 출력 에너지
4.3 선폭
5. 결 론
참고 문헌
본문내용
rt B, pp.587-702.
[2]. J.E.Bjorkholm and H.G. Dannielmeyer, Appl. Phys. Lett. Vol.15, pp.171-173
(1969).
[3]. J.G.Haub et al, Appl.Phys. Lett. Vol.58, pp.1718-1720 (1991).
[4]. D.Eimerl et al, J.Appl.Phys. Vol.62, pp.1968-1983 (1986).
[5]. J.W.Nibler and G.A.Pubanz, in Advances in nonlinear spectroscopy, eds.
R.J.H.Clark and R.E.Hester (Wiley, New York, 1988), pp.1-49.
[6]. Y.X.Fan et al, Appl.Phys. Lett. Vol.53,pp.2014(1988).
[7]. L.K.Chen et al, Appl.Phys. Lett. Vol.53, pp.175(1988).
[8]. N.Kroll, Phys. Review. Vol.127, pp.1207 (1962).
[9]. A.Giordamine and R.C.Miller, Phys.Review Lett. Vol.4, pp.973(1965).
[10]. W.H.Louisell, Coulped Mode and Parametric Electronics, New York:
Wiley, (1969).
[11]. S.E.Harris, Proc. IEEE, Vol.57, pp.2096-2113(1969).
[12]. N.P.Barnes and V.G.Corcoran, Appl.Opt. Vol.15, pp.696-699(1976).
[13]. S.J.Brosnan and R.L.Byer, IEEE J.Quantum Electron. Vol.QE-15, pp.415-431(1979).
Table 1. Structure and physical properties of BBO.
Crystal structure : trigonal, space group R3c
Cell parameters : a=b=12.532 Å, c=12.717 Å, Z=6
Melting point : 1095 ± 5℃
Transition temperature : 925 ± 5℃
Optical homogeneity : n ≒ 10-6 /cm
Mohs hardness : 4
Density : 3.85 g/cm3
Absorption coefficiency : < 0.1%/cm (at 1064 nm)
Specific heat : 1.91 J/cm3·K
Hygroscopic susceptibility : low
Thermal expansion coefficiency : a, 4 x 10-6/K
b, 36 x 10-6/K
Thermal conductivity : ⊥c, 0.08 W/m/K
//c, 0.8 W/m/K
Table 2. Linear optical properties of BBO.
Transparency range : 189 - 3500 nm
Reflective indices :
at 1064.2 nm ne = 1.5425, no = 1.6551
at 532.1 nm ne = 1.5555, no = 1.6749
at 266.0 nm ne = 1.5555, no = 1.6749
Thermo-optic coefficients dne/dt = -16.6 x 10-6/℃
Table 3. Nonlinear optical properties.
Phase matchable output wavelength : 189 - 1750 nm
NLO coefficiency : d11 = 5.8 x d36(KDP)
d31 = 0.05 x d11
d22 < 0.05 x d11
Electro-optic coefficients : 11 = 2.7 pm/V, 22, 31 < 0.1 11
Half-wave voltage : 48 KV (at 1064 nm)
Damage threshold
at 1064 nm 5 GW/cm2(10 ns); 10 GW/cm2(1.3 ns)
at 532 nm 1 GW/cm2(10 ns); 7 GW/cm2(250 ps)
Fig. 1. A schematic of the BBO OPO pumped at 355 nm by a Q-switched Nd:YAG
laser. D1 and D2: dichroics(R>99.5% at 355 nm); M1, M2 and M3 : OPO
cavity mirrors.
Fig. 2. Illustration of the BBO cut and orientation : x, y, and z are the laboratory
axes and a, b, c are the crystallographic axes. The pump propagation angle p
subtends the pump vector Kp and the optic axis c. p is the angle between
the projection of the pump wave vector onto the ab plane and the b axis.
The crystal is cut with an internal normal propagation angle of 30℃.
Fig. 3. Tuning response in a BBO OPO.
Fig. 4. Output energy responses of the BBO OPO versus input pump energy per
pulse at signal wavelength of 607nm.
Fig. 5. OPO energy conversion efficiency versus pump pulse energy (number of times
above threshold) at a signal wavelength of 607nm.
Fig. 6. Variation of the spectral linewidth of the signal wave.
Fig. 7. Linewidth of the signal wavelength at 607nm.
[2]. J.E.Bjorkholm and H.G. Dannielmeyer, Appl. Phys. Lett. Vol.15, pp.171-173
(1969).
[3]. J.G.Haub et al, Appl.Phys. Lett. Vol.58, pp.1718-1720 (1991).
[4]. D.Eimerl et al, J.Appl.Phys. Vol.62, pp.1968-1983 (1986).
[5]. J.W.Nibler and G.A.Pubanz, in Advances in nonlinear spectroscopy, eds.
R.J.H.Clark and R.E.Hester (Wiley, New York, 1988), pp.1-49.
[6]. Y.X.Fan et al, Appl.Phys. Lett. Vol.53,pp.2014(1988).
[7]. L.K.Chen et al, Appl.Phys. Lett. Vol.53, pp.175(1988).
[8]. N.Kroll, Phys. Review. Vol.127, pp.1207 (1962).
[9]. A.Giordamine and R.C.Miller, Phys.Review Lett. Vol.4, pp.973(1965).
[10]. W.H.Louisell, Coulped Mode and Parametric Electronics, New York:
Wiley, (1969).
[11]. S.E.Harris, Proc. IEEE, Vol.57, pp.2096-2113(1969).
[12]. N.P.Barnes and V.G.Corcoran, Appl.Opt. Vol.15, pp.696-699(1976).
[13]. S.J.Brosnan and R.L.Byer, IEEE J.Quantum Electron. Vol.QE-15, pp.415-431(1979).
Table 1. Structure and physical properties of BBO.
Crystal structure : trigonal, space group R3c
Cell parameters : a=b=12.532 Å, c=12.717 Å, Z=6
Melting point : 1095 ± 5℃
Transition temperature : 925 ± 5℃
Optical homogeneity : n ≒ 10-6 /cm
Mohs hardness : 4
Density : 3.85 g/cm3
Absorption coefficiency : < 0.1%/cm (at 1064 nm)
Specific heat : 1.91 J/cm3·K
Hygroscopic susceptibility : low
Thermal expansion coefficiency : a, 4 x 10-6/K
b, 36 x 10-6/K
Thermal conductivity : ⊥c, 0.08 W/m/K
//c, 0.8 W/m/K
Table 2. Linear optical properties of BBO.
Transparency range : 189 - 3500 nm
Reflective indices :
at 1064.2 nm ne = 1.5425, no = 1.6551
at 532.1 nm ne = 1.5555, no = 1.6749
at 266.0 nm ne = 1.5555, no = 1.6749
Thermo-optic coefficients dne/dt = -16.6 x 10-6/℃
Table 3. Nonlinear optical properties.
Phase matchable output wavelength : 189 - 1750 nm
NLO coefficiency : d11 = 5.8 x d36(KDP)
d31 = 0.05 x d11
d22 < 0.05 x d11
Electro-optic coefficients : 11 = 2.7 pm/V, 22, 31 < 0.1 11
Half-wave voltage : 48 KV (at 1064 nm)
Damage threshold
at 1064 nm 5 GW/cm2(10 ns); 10 GW/cm2(1.3 ns)
at 532 nm 1 GW/cm2(10 ns); 7 GW/cm2(250 ps)
Fig. 1. A schematic of the BBO OPO pumped at 355 nm by a Q-switched Nd:YAG
laser. D1 and D2: dichroics(R>99.5% at 355 nm); M1, M2 and M3 : OPO
cavity mirrors.
Fig. 2. Illustration of the BBO cut and orientation : x, y, and z are the laboratory
axes and a, b, c are the crystallographic axes. The pump propagation angle p
subtends the pump vector Kp and the optic axis c. p is the angle between
the projection of the pump wave vector onto the ab plane and the b axis.
The crystal is cut with an internal normal propagation angle of 30℃.
Fig. 3. Tuning response in a BBO OPO.
Fig. 4. Output energy responses of the BBO OPO versus input pump energy per
pulse at signal wavelength of 607nm.
Fig. 5. OPO energy conversion efficiency versus pump pulse energy (number of times
above threshold) at a signal wavelength of 607nm.
Fig. 6. Variation of the spectral linewidth of the signal wave.
Fig. 7. Linewidth of the signal wavelength at 607nm.