[과외]고등 수학 집합편 03
본 자료는 4페이지 의 미리보기를 제공합니다. 이미지를 클릭하여 주세요.
닫기
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
해당 자료는 4페이지 까지만 미리보기를 제공합니다.
4페이지 이후부터 다운로드 후 확인할 수 있습니다.

목차

문제 61~91

본문내용

12② 14③ 15④ 16⑤17
71. 인 집합 에 대하여 를
로 정의할 때, 다음 중 옳지 않은 것을 모두 고르면?[중경, 금란어]





72. 두 집합 에 대하여 이고 을 만족하는 집합 의 개수를 구하여라.[우산, 신일여]
73. 실수 전체의 집합을 부분집합 를 다음과 같이 정의하자.
이 이때, 집합 과 같은 것은?[동덕여, 연남]
① ② ③
④ ⑤
74. 전체집합 의 세 부분집합 사이에 인 관계가 성립할 때, 다음 중 옳은 것은?[신일, 경동]
① ② ③
④ ⑤
75. 세 집합 에 대하여 다음 중 옳지 않은 것은?[은광여, 반포]





76. 전체집합 의 두 부분집합 에 대하여
의 관계가 성립할 때, 다음 중 옳은 것은?[동대부, 상문]
① ② ③ ④ ⑤
77. 에 대하여 을 만족하는 집합 의 개수를 구하여라.[숭의여, 인창]
78. 어떤 학급 50명의 학생에게 세 문제를 풀게 하였더니 를 푼 학생이 31명, 를 푼 학생이 37명, 를 푼 학생이 40명이었다. 또, 한 문제도 풀지 못한 학생이 5명, 세 문제 모두 푼 학생이 23명이었다. 세 문제 중 꼭 두 문제만 푼 학생 수를 구하여라.
[선덕, 정의여]
79. 집합 의 부분집합 에 대하여 다음 보기 중에서 옳은 것을 모두 고르면?[성남, 영등포]
<보기>
I.
II.
III.
IV.
① I, II② II, III③ III, IV④ I, II, III⑤ II, III, IV0
80. 전체집합 이고 일 때,
을 만족하는 집합 의 개수는?[서라벌, 중대부]
① 2② 4③ 8④ 16⑤32
81. 30가구가 사는 어느 마을에 세 종류의 신문이 배달된다. 신문을 보는 가구수는 각각 이고, 두 종류의 신문만 보는 가구수는 9라 한다. 세 종류의 신문을 모두 보는 가구수를 구하면? (단, 신문을 보지 않는 가구는 없다.)[경신, 마포]
① 2② 3③ 4④ 5⑤ 6
82. 두 집합
에서 이고 일 때, 의 값은?[양재, 진선여]
① -12② -12③ 23④ 35⑤ 47
83. 실수 전체의 집합 에서 네 개의 집합
라고 할 때, 를 로 옳게 나타낸 것은?[대광, 에일여]
① ② ③
④ ⑤
84. <보기>에서 집합이 갖는 성질 중 옳은 것만으로 짝지어진 것은?[세화, 경문]
<보기>
(ㄱ)
(ㄴ)
(ㄷ)
(ㄹ)
(ㅁ)
① (ㄱ), (ㄴ), (ㄹ)② (ㄱ), (ㄷ), (ㄹ)③ (ㄱ), (ㄹ), (ㅁ)
④ (ㄴ), (ㄷ), (ㅁ)⑤ (ㄴ), (ㄹ), (ㅁ)
85. 두 집합 에 대하여 연산 ◎를
로 정의한다. 두 집합 일 때,
를 만족하는 집합 는?[중동, 양정]
① ② ③
④ ⑤
86. 집합 에 대한 다음 보기의 설명 중 옳은 것의 개수는?[여의도, 창덕여]
<보기>
I.
II.
III.
IV.
① 0② 1③ 2④ 3⑤ 4
87. 전체집합 의 부분집합 에 대하여 연산 를 다음과 같이 정의한다.
다음 중 옳지 않은 것은?[전선여, 개포]
① ② ③
④ ⑤
88. 집합 의 두 부분집합 가 두 조건
(i) (ii)
를 만족한다고 할 때 이러한 조건을 만족하는 의 부분집합들의 모임 의 개수를 구하면?[광성, 경성]
① 5② 6③ 7④ 8⑤ 9
89. 집합 의 두 부분집합들의 모임 중 두 성질
(i)
(ii)
를 만족시키는 것을 고르면?배명, 배재]





90. 두 집합 에 대하여 연산 를
로 정의할 때, 와 같은 집합은?[관악, 중동]
① ② ③ ④ ⑤
91. 전체집합을 자연수 전체의 집합으로 하고, 의 약수의 집합을 , 배수의 집합을 이라 할 때, 은?[고려, 경복]
① ② ③ ④ ⑤
61. ③
벤 다이어그램에서
62. ①
는 자연수이므로
일 때,
의 최대값은 110
63. ④
라 하면 <그림>에서
따라서, 이므로
64. ②
이고
이므로,
65. 24
이므로
의 원소의 합은 1+2+4+8+9=24
66. ①
이 정수이므로 이면
이 정수이므로 일 때, 이 되어 모순이다.
이다.
67. ②
이므로
① 이므로 부적당하다.
② 조건 I, II, III을 모두 만족한다.
③ 이므로 부적당하다.
④ 이므로 부적당하다.
⑤ 이므로 부적당하다.
68. ④
은 두 조건을 모두 만족하므로 의 위상이다.
는 이므로 는 의 위상이 아니다.
은 이므로 의 위상이 아니다.
는 두 조건을 모두 만족하므로 의 위상이다.
따라서, 의 위상은 이다.
69. ①
70. ③
를 푼 학생의 집합을 각각 라 하고, 전체집합을 라 하면
에서
따라서, 만을 푼 학생의 수는
71. ②, ⑤





72. 32
이므로 집합 는
를 포함하는 집합 의 부분집합이어야 한다.
(개)
73. ③
따라서, 구하는 집합은
74. ④
따라서 조건식은
그런데 이므로
75. ③




⑤ B BIGCUP C=B이므로
76. ①
따라서 주어진 관계식에서 이므로
77. 48
이므로
는 의 원소 1, 2, 3, 4 중 어느 2개의 원소로 가지므로, 그 방법의 수는 (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)의 6가지이다.
이 각각에 대하여 집합
82. ③
그림에서
83. ④
그런데
84. ③
(ㄱ)
: 분배법칙 (T)
(ㄴ) 이므로 (F)
(ㄷ) : 드 모르간의 법칙 (T)
(ㄹ) 은 이다. (T)
(ㅁ) 가 어떠한 집합이라도 이므로 (T)
따라서 옳은 것은 (ㄱ), (ㄹ), (ㅁ)
85. ②
연산 에 대하여
즉, 결합법칙이 성립하므로
에서
그런데, 이므로
86. ⑤
I.
II.
III. 정수 에 대하여
이므로 은 짝수이다.
IV. 정수 에 대하여
이라 하면
87. ③





88. ④
(i) 일 때,
(ii)
일 때,
{1}
{2}
{3}
{4}
{2, 3, 4}
{1, 3, 4}
{1, 2, 4}
{1, 2, 3}
(iii) 일 때,
{1, 2}
{1, 3}
{1, 4}
{3, 4}
{2, 4}
{2, 3}
(i), (ii), (iii)에 의하여 1+4+3=8(개)
89. ⑤




⑤ 는 (i), (ii)를 만족한다.
90. ③
91. ④
에서
에서
내신문제연구소

키워드

집합,   원소,   유리수,   연산,   배수
  • 가격2,300
  • 페이지수13페이지
  • 등록일2006.12.04
  • 저작시기1999.7
  • 파일형식한글(hwp)
  • 자료번호#379791
본 자료는 최근 2주간 다운받은 회원이 없습니다.
청소해
다운로드 장바구니