-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20
-
21
-
22
-
23
-
24
-
25
-
26
-
27
-
28
-
29
-
30
-
31
-
32
-
33
-
34
-
35
-
36
-
37
-
38
-
39
-
40
-
41
-
42
-
43
-
44
-
45
-
46
-
47
-
48
-
49
-
50
-
51
-
52
-
53
-
54
-
55
-
56
-
57
-
58
-
59
-
60
-
61
-
62
-
63
-
64
-
65
-
66
-
67
-
68
-
69
-
70
-
71
-
72
-
73
-
74
-
75
-
76
-
77
-
78
-
79
-
80
-
81
-
82
-
83
-
84
-
85
-
86
-
87
-
88
-
89
-
90
-
91
-
92
-
93
-
94
-
95
-
96
-
97
-
98
-
99
-
100
-
101
-
102
-
103
-
104
-
105
-
106
-
107
-
108
-
109
-
110
-
111
-
112
-
113
-
114
-
115
-
116
-
117
-
118
-
119
-
120
-
121
-
122
-
123
-
124
-
125
-
126
-
127
-
128
-
129
-
130
-
131
-
132
-
133
-
134
-
135
-
136
-
137
-
138
-
139
-
140
-
141
-
142
-
143
-
144
-
145
-
146
-
147
-
148
-
149
-
150
-
151
-
152
-
153
-
154
-
155
-
156
-
157
-
158
-
159
-
160
-
161
-
162
-
163
-
164
-
165
-
166
-
167
-
168
-
169
-
170
-
171
-
172
-
173
-
174
-
175
-
176
-
177
-
178
-
179
-
180
-
181
-
182
-
183
-
184
-
185
-
186
-
187
-
188
-
189
-
190
-
191
-
192
-
193
-
194
-
195
-
196
-
197
-
198
-
199
-
200
-
201
-
202
-
203
-
204
-
205
-
206
-
207
-
208
-
209
-
210
-
211
-
212
-
213
-
214
-
215
-
216
-
217
-
218
-
219
-
220
-
221
-
222
-
223
-
224
-
225
-
226
-
227
-
228
-
229
-
230
-
231
-
232
-
233
-
234
-
235
-
236
-
237
-
238
-
239
-
240
-
241
-
242
-
243
-
244
-
245
-
246
-
247
-
248
-
249
-
250
본 자료는 미리보기를 지원하지 않습니다.

-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20
-
21
-
22
-
23
-
24
-
25
-
26
-
27
-
28
-
29
-
30
-
31
-
32
-
33
-
34
-
35
-
36
-
37
-
38
-
39
-
40
-
41
-
42
-
43
-
44
-
45
-
46
-
47
-
48
-
49
-
50
-
51
-
52
-
53
-
54
-
55
-
56
-
57
-
58
-
59
-
60
-
61
-
62
-
63
-
64
-
65
-
66
-
67
-
68
-
69
-
70
-
71
-
72
-
73
-
74
-
75
-
76
-
77
-
78
-
79
-
80
-
81
-
82
-
83
-
84
-
85
-
86
-
87
-
88
-
89
-
90
-
91
-
92
-
93
-
94
-
95
-
96
-
97
-
98
-
99
-
100
-
101
-
102
-
103
-
104
-
105
-
106
-
107
-
108
-
109
-
110
-
111
-
112
-
113
-
114
-
115
-
116
-
117
-
118
-
119
-
120
-
121
-
122
-
123
-
124
-
125
-
126
-
127
-
128
-
129
-
130
-
131
-
132
-
133
-
134
-
135
-
136
-
137
-
138
-
139
-
140
-
141
-
142
-
143
-
144
-
145
-
146
-
147
-
148
-
149
-
150
-
151
-
152
-
153
-
154
-
155
-
156
-
157
-
158
-
159
-
160
-
161
-
162
-
163
-
164
-
165
-
166
-
167
-
168
-
169
-
170
-
171
-
172
-
173
-
174
-
175
-
176
-
177
-
178
-
179
-
180
-
181
-
182
-
183
-
184
-
185
-
186
-
187
-
188
-
189
-
190
-
191
-
192
-
193
-
194
-
195
-
196
-
197
-
198
-
199
-
200
-
201
-
202
-
203
-
204
-
205
-
206
-
207
-
208
-
209
-
210
-
211
-
212
-
213
-
214
-
215
-
216
-
217
-
218
-
219
-
220
-
221
-
222
-
223
-
224
-
225
-
226
-
227
-
228
-
229
-
230
-
231
-
232
-
233
-
234
-
235
-
236
-
237
-
238
-
239
-
240
-
241
-
242
-
243
-
244
-
245
-
246
-
247
-
248
-
249
-
250


본문내용
1.1. Given the vectors M = −10ax + 4ay − 8az and N = 8ax + 7ay − 2az, find:
a) a unit vector in the direction of −M+ 2N.
−M+ 2N = 10ax − 4ay + 8az + 16ax + 14ay − 4az = (26, 10, 4)
Thus
a =
(26, 10, 4)
|(26, 10, 4)|
= (0.92, 0.36, 0.14)
b) the magnitude of 5ax +N− 3M:
(5, 0, 0) + (8, 7,−2) − (−30, 12,−24) = (43,−5, 22), and |(43,−5, 22)| = 48.6.
c) |M||2N|(M+N):
|(−10, 4,−8)||(16, 14,−4)|(−2, 11,−10) = (13.4)(21.6)(−2, 11,−10)
= (−580.5, 3193,−2902)
1.2. The three vertices of a triangle are located at A(−1, 2, 5), B(−4,−2,−3), and C(1, 3,−2).
a) Find the length of the perimeter of the triangle: Begin with AB = (−3,−4,−8), BC = (5, 5, 1),
and CA = (−2,−1, 7). Then the perimeter will be = |AB| + |BC| + |CA| = √9 + 16 + 64+ √25 + 25 + 1 + √4 + 1 + 49 = 23.9.
a) a unit vector in the direction of −M+ 2N.
−M+ 2N = 10ax − 4ay + 8az + 16ax + 14ay − 4az = (26, 10, 4)
Thus
a =
(26, 10, 4)
|(26, 10, 4)|
= (0.92, 0.36, 0.14)
b) the magnitude of 5ax +N− 3M:
(5, 0, 0) + (8, 7,−2) − (−30, 12,−24) = (43,−5, 22), and |(43,−5, 22)| = 48.6.
c) |M||2N|(M+N):
|(−10, 4,−8)||(16, 14,−4)|(−2, 11,−10) = (13.4)(21.6)(−2, 11,−10)
= (−580.5, 3193,−2902)
1.2. The three vertices of a triangle are located at A(−1, 2, 5), B(−4,−2,−3), and C(1, 3,−2).
a) Find the length of the perimeter of the triangle: Begin with AB = (−3,−4,−8), BC = (5, 5, 1),
and CA = (−2,−1, 7). Then the perimeter will be = |AB| + |BC| + |CA| = √9 + 16 + 64+ √25 + 25 + 1 + √4 + 1 + 49 = 23.9.
소개글