
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20
-
21
-
22
-
23
-
24
-
25
-
26
-
27
-
28
-
29
-
30
-
31
-
32
-
33
-
34
-
35
-
36
-
37
-
38
-
39
-
40
-
41
-
42
-
43
-
44
-
45


목차
집진장치 원리 / 특징
■ 원리와 기능
▲ 중력(침강) 집진기
▲ 관성력 집진장치
▲ 원심력 집진기 (Cyclone Dust Collector)
▶ 원심력 집진기 직렬연결
▶ Multiclone (병렬 연결)
▲ 세정집진장치
▲ 여과 집진장치
▲ 전기집진기
전기집진 신기술
■ 원리와 기능
▲ 중력(침강) 집진기
▲ 관성력 집진장치
▲ 원심력 집진기 (Cyclone Dust Collector)
▶ 원심력 집진기 직렬연결
▶ Multiclone (병렬 연결)
▲ 세정집진장치
▲ 여과 집진장치
▲ 전기집진기
전기집진 신기술
본문내용
하는 공정이다. 막은 오랫동안 식용수를 처리하는데 사용되어 왔으며 이를 VOC 처리에 적용시키고자 하는 기술은 최근의 일이다.
기본원리
분리막 기술은 염소계 탄화수소나 염화불화탄소 등 과거에 회수하기 어려웠던 기체들을 회수하는데 효과적이다. 반 투과막은 합성 고분자로 만들며 분리 시 구동력은 막 사이의 압력차를 이용한다. 진공펌프를 사용하여 막모듈 내의 압력을 낮게 유지해주며 VOC 함유기체를 막을 통과시키면 VOC만 막을 통과하고 공기는 통과하지 못해 결국 VOC와 공기가 분리된다.
특징
막 분리공정의 가장 두드러진 장점은 연소나 분해공정에서 발생될 수 있는 부산물의 생성이 전혀 없다는 점으로 화합물은 다른 원하지 않는 부산물로 분해되지 않고 재이용할 수 있는 형태로 회수할 수 있다. 또한 고농도의 VOC를 포함한 배가스도 경제적으로 제어할 수 있다. 반면 진공펌프와 냉각장치를 이용하기 때문에 자본비와 운영비가 많이 소요되고 고농도의 VOC를 얻기 위해 다른 공정이 필요하며 그에 따른 자본비가 소요된다는 단점이 있다. 그러나 막 분리공정의 전반적인 운영비는 비교적 합리적인 것으로 알려져 있다.
Flares
Flares는 연소 장비중의 하나로 평소공정의 비이상적인 작동시 비상용으로 사용되며 때로는 VOC 제거에 도움을 주는 경우도 있다. 석유정제와 같은 몇몇 공정에서는 Flares가 주로 VOCs 제거용으로 사용된다. VOCs함유 폐가스가 수집관을 통해 들어오게 되는데 여기서 필요하면 물과 유기액적을 없애기 위해 Knockout Drum이 사용되는데, 물은 불을 끌 수 있기 때문에 제거되어야만 하고 유기액적은 소각후에 입자를 발생하기 때문에 제거되어야만 한다. VOC함유 가스흐름이 Knockout Drum을 빠져 나온 후에는 Water Seal과 Stock Seal을 통과하고 가스가 퍼지게 되어 불꽃이 역화되지 않도록 한다. 마지막으로 폐가스는 Flares를 통해 대기로 방출되는데, 여기에 설치되어 있는 버너는 처리가스를 태워 VOC를 파괴하게 된다.
코로나 방전법
기본원리
고 에너지 코로나 방전법은 전기방전 반응기에 사용되며 자유기(free radical)를 생성하는 기술로 자유기 산화는 중성의 기체분자로부터 전자를 이탈시켜 양이온으로 변화시키기 위해 전기장을 형성하는 것과 깊은 관련이 있다. 전자의 방출은 강한 전기장이 기체 내에 형성되어 기체분자를 이온화시키고 저온 플라즈마를 형성함으로써 이루어지며 강한 전기장은 중성의 기체분자로부터 전자를 이탈시켜 양이온으로 만들어 전류를 흐르게 한다.
이탈된 전자는 화학반응의 촉매로 작용하며 특히 산소 존재 하에서 산화반응이 일어아고 화합물은 분자량이 보다 작은 화합물로 분해 된다.
특징
고 에너지 코로나 방전법은 탄소흡착법이나 증기 재생과는 달리 저농도의 VOC도 효과적으로 제어할 수 있는 이상적인 VOC 처리법으로 전기만을 연료로 사용한다. 고농도의 VOC 처리에도 효과적이며 상온에서 작동되어 배가스를 예열하기 위한 장치가 필요 없다는 장점이 있다. 반면 배가스의 일부만이 전극 부근의 고온 플라즈마와 접촉하기 때문에 오염물질의 완전제거가 불가능하고 용매를 재이용할 수 없으며 생성되는 플라즈마의 에너지가 낮기 때문에 규모 확대의 문제가 발생할 수 있다.
막 분리법이나 소각 등의 다른 공정과 비교해 볼 때 코로나 공정의 특징은 자본비가 저렴하고 운영비의 대부분은 시스템을 작동하기 위한 연료비가 차지한다는 것이다.
비열 플라즈마 기술
기본원리
비열 플라즈마 공정은 전기 에너지의 대부분이 기체의 가열보다는 강력한 전자를 생산하는데 이용되며 변환점에서 플라즈마가 발생되는 원리를 이용한 것으로 전자 충격 해리(electron-impact dissociation)나 배경(background) 기체분자의 이온화를 통해 강력한 전자가 오염물질 분자를 산화, 환원, 또는 파괴할 수 있는 자유기와 이온 및 또 다른 분자를 생성하게 된다. 대부분 저농도 대기오염물질을 제어할 경우 에너지 선택성으로 인하여 비열 플라즈마 방법이 가장 많이 적용된다.
특징
고용량 저농도의 VOC를 처리할 경우 비열 플라즈마 기술로 코로나 또는 부전도성 장벽방전과 같은 전기방전 공정에 비해 운영비가 저렴하고 RTO, RCO, 혼성공정에 비해서도 가격 경쟁력이 있는 가능성 있는 기술로 평가되고 있다.
이상에서 서술한 여러 VOC 제거방법의 투자비, 운영비, 처리능력과 제어특성을 표 5.1에 정리하였다.
< VOC 제거방법과 그의 처리능력 및 특성 >
제거방법
투자비
운영비
처리능력
제어특성
열 산화법
고
고
고
폭발 위험, 보조연료 필요
2차 오염원 발생
촉매 산화법
중
중
고
촉매독으로 인한 효율 저하
축열식 열소각
고
중
고
에너지 소비량 감소, NOx 발생.
열 회수율이 비교적 낮음
축열식 촉매산화
고
중
고
경제적인 폐열회수 가능
처리대상 기체 적용범위 한정
무화염 열 산화법
중
저
고
산화기 예열 필요, 고효율 분해 효율
흡·탈착 촉매산화
중
저
고
저농도 연속적 배출되는 공정에 유리
흡 착 법
고
중
고
선택적 회수 가능, 응축에 의한 유해성
응 축 법
고
중
중
비경제적, 특정화합물에 사용
흡 수 법
저
중
고
어느 공정에나 쉽게 적용
처리대상 물질에 맞는 흡수제 사용
농 축 법
중
중
중
농축배율 결정
생물학적 처리법
중
중
고
폭발성 화합물 처리, 대용량 처리 불가
증기 재생법
저
고
고
부산물 생성이 없음, 산성가스 제거
장치가 필요, NaHCO₃슬러리 처리
요구
막 분리법
고
고
고
다단 분리 system이 요구
펌프나 냉각장치 요구
코로나 방전법
저
고
고
연료가 필요 없음, 불완전하게
파괴됨. 규모 확대의 문제가 발생
비열 플라즈마법
중
중
고
고정 연소 오염원에 사용
저농도 대기오염물질 제어에 유리
농도가 매우 낮을 때, 즉 1차 처리를 거친 배출가스 중에 포함된 저농도의 VOC를 제거하는 데는 연속적인 가열로 인한 에너지가 많이 소모된다. 그래서 새로운 개념의 효율적인 제어방법인 흡·탈착 촉매산화 하이브리드 시스템 개발 및 보급이 필요하다.
기본원리
분리막 기술은 염소계 탄화수소나 염화불화탄소 등 과거에 회수하기 어려웠던 기체들을 회수하는데 효과적이다. 반 투과막은 합성 고분자로 만들며 분리 시 구동력은 막 사이의 압력차를 이용한다. 진공펌프를 사용하여 막모듈 내의 압력을 낮게 유지해주며 VOC 함유기체를 막을 통과시키면 VOC만 막을 통과하고 공기는 통과하지 못해 결국 VOC와 공기가 분리된다.
특징
막 분리공정의 가장 두드러진 장점은 연소나 분해공정에서 발생될 수 있는 부산물의 생성이 전혀 없다는 점으로 화합물은 다른 원하지 않는 부산물로 분해되지 않고 재이용할 수 있는 형태로 회수할 수 있다. 또한 고농도의 VOC를 포함한 배가스도 경제적으로 제어할 수 있다. 반면 진공펌프와 냉각장치를 이용하기 때문에 자본비와 운영비가 많이 소요되고 고농도의 VOC를 얻기 위해 다른 공정이 필요하며 그에 따른 자본비가 소요된다는 단점이 있다. 그러나 막 분리공정의 전반적인 운영비는 비교적 합리적인 것으로 알려져 있다.
Flares
Flares는 연소 장비중의 하나로 평소공정의 비이상적인 작동시 비상용으로 사용되며 때로는 VOC 제거에 도움을 주는 경우도 있다. 석유정제와 같은 몇몇 공정에서는 Flares가 주로 VOCs 제거용으로 사용된다. VOCs함유 폐가스가 수집관을 통해 들어오게 되는데 여기서 필요하면 물과 유기액적을 없애기 위해 Knockout Drum이 사용되는데, 물은 불을 끌 수 있기 때문에 제거되어야만 하고 유기액적은 소각후에 입자를 발생하기 때문에 제거되어야만 한다. VOC함유 가스흐름이 Knockout Drum을 빠져 나온 후에는 Water Seal과 Stock Seal을 통과하고 가스가 퍼지게 되어 불꽃이 역화되지 않도록 한다. 마지막으로 폐가스는 Flares를 통해 대기로 방출되는데, 여기에 설치되어 있는 버너는 처리가스를 태워 VOC를 파괴하게 된다.
코로나 방전법
기본원리
고 에너지 코로나 방전법은 전기방전 반응기에 사용되며 자유기(free radical)를 생성하는 기술로 자유기 산화는 중성의 기체분자로부터 전자를 이탈시켜 양이온으로 변화시키기 위해 전기장을 형성하는 것과 깊은 관련이 있다. 전자의 방출은 강한 전기장이 기체 내에 형성되어 기체분자를 이온화시키고 저온 플라즈마를 형성함으로써 이루어지며 강한 전기장은 중성의 기체분자로부터 전자를 이탈시켜 양이온으로 만들어 전류를 흐르게 한다.
이탈된 전자는 화학반응의 촉매로 작용하며 특히 산소 존재 하에서 산화반응이 일어아고 화합물은 분자량이 보다 작은 화합물로 분해 된다.
특징
고 에너지 코로나 방전법은 탄소흡착법이나 증기 재생과는 달리 저농도의 VOC도 효과적으로 제어할 수 있는 이상적인 VOC 처리법으로 전기만을 연료로 사용한다. 고농도의 VOC 처리에도 효과적이며 상온에서 작동되어 배가스를 예열하기 위한 장치가 필요 없다는 장점이 있다. 반면 배가스의 일부만이 전극 부근의 고온 플라즈마와 접촉하기 때문에 오염물질의 완전제거가 불가능하고 용매를 재이용할 수 없으며 생성되는 플라즈마의 에너지가 낮기 때문에 규모 확대의 문제가 발생할 수 있다.
막 분리법이나 소각 등의 다른 공정과 비교해 볼 때 코로나 공정의 특징은 자본비가 저렴하고 운영비의 대부분은 시스템을 작동하기 위한 연료비가 차지한다는 것이다.
비열 플라즈마 기술
기본원리
비열 플라즈마 공정은 전기 에너지의 대부분이 기체의 가열보다는 강력한 전자를 생산하는데 이용되며 변환점에서 플라즈마가 발생되는 원리를 이용한 것으로 전자 충격 해리(electron-impact dissociation)나 배경(background) 기체분자의 이온화를 통해 강력한 전자가 오염물질 분자를 산화, 환원, 또는 파괴할 수 있는 자유기와 이온 및 또 다른 분자를 생성하게 된다. 대부분 저농도 대기오염물질을 제어할 경우 에너지 선택성으로 인하여 비열 플라즈마 방법이 가장 많이 적용된다.
특징
고용량 저농도의 VOC를 처리할 경우 비열 플라즈마 기술로 코로나 또는 부전도성 장벽방전과 같은 전기방전 공정에 비해 운영비가 저렴하고 RTO, RCO, 혼성공정에 비해서도 가격 경쟁력이 있는 가능성 있는 기술로 평가되고 있다.
이상에서 서술한 여러 VOC 제거방법의 투자비, 운영비, 처리능력과 제어특성을 표 5.1에 정리하였다.
< VOC 제거방법과 그의 처리능력 및 특성 >
제거방법
투자비
운영비
처리능력
제어특성
열 산화법
고
고
고
폭발 위험, 보조연료 필요
2차 오염원 발생
촉매 산화법
중
중
고
촉매독으로 인한 효율 저하
축열식 열소각
고
중
고
에너지 소비량 감소, NOx 발생.
열 회수율이 비교적 낮음
축열식 촉매산화
고
중
고
경제적인 폐열회수 가능
처리대상 기체 적용범위 한정
무화염 열 산화법
중
저
고
산화기 예열 필요, 고효율 분해 효율
흡·탈착 촉매산화
중
저
고
저농도 연속적 배출되는 공정에 유리
흡 착 법
고
중
고
선택적 회수 가능, 응축에 의한 유해성
응 축 법
고
중
중
비경제적, 특정화합물에 사용
흡 수 법
저
중
고
어느 공정에나 쉽게 적용
처리대상 물질에 맞는 흡수제 사용
농 축 법
중
중
중
농축배율 결정
생물학적 처리법
중
중
고
폭발성 화합물 처리, 대용량 처리 불가
증기 재생법
저
고
고
부산물 생성이 없음, 산성가스 제거
장치가 필요, NaHCO₃슬러리 처리
요구
막 분리법
고
고
고
다단 분리 system이 요구
펌프나 냉각장치 요구
코로나 방전법
저
고
고
연료가 필요 없음, 불완전하게
파괴됨. 규모 확대의 문제가 발생
비열 플라즈마법
중
중
고
고정 연소 오염원에 사용
저농도 대기오염물질 제어에 유리
농도가 매우 낮을 때, 즉 1차 처리를 거친 배출가스 중에 포함된 저농도의 VOC를 제거하는 데는 연속적인 가열로 인한 에너지가 많이 소모된다. 그래서 새로운 개념의 효율적인 제어방법인 흡·탈착 촉매산화 하이브리드 시스템 개발 및 보급이 필요하다.
소개글