AI 인공지능 데이터 분석) CNC 가공 데이터 학습을 통한 자동 검사 모델 만들기
본 자료는 5페이지 의 미리보기를 제공합니다. 이미지를 클릭하여 주세요.
닫기
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
해당 자료는 5페이지 까지만 미리보기를 제공합니다.
5페이지 이후부터 다운로드 후 확인할 수 있습니다.

소개글

AI 인공지능 데이터 분석) CNC 가공 데이터 학습을 통한 자동 검사 모델 만들기에 대한 보고서 자료입니다.

목차

1. 데이터 분석 배경
2. 데이터 분석 목적
3. 데이터 분석 효과
4. 데이터 학습 결과
5. 분석 환경
6. 학습데이터 구조
7. 데이터 분석(EDA) 및 가공
8. 학습 모델 구축 및 예측
- CNN, DNN
- XGBoost, LightGBM, CatBoost, RandomForest

본문내용

1. 문제 발생 장소 : 자동차 부품사 CNC 가공 공정

2. CNC 가공이란 :
1) CNC 시스템을 사용하여 회전하는 작업물을 절삭하는 공정
2) 정밀하고 복잡한 형상을 가진 부품을 가공할 수 있어 다양한 산업 분야에 사용 됨

3. 문제 발생 내용 :
1) CNC 절삭 공구가 마모되거나, 마모 한계치에 도달하게 되면 가공 정밀도가 떨어짐
2) 설비 셋팅 조건도 가공 정밀도에 영향을 미침
3) 이러한 문제점을 가공이 완료 된 이후 외관검사를 통해서만 알 수 있음
4) 문제 파악이 늦어져서 이미 생산 된 제품에 대한 손실이 발생함

4. 분석 목적 : CNC 가공 공정 데이터를 학습하여 공정이 완료 되기 전에 미리 제품의 판정 결과를 예측 할 수 있는 모델 개발

5. 분석 효과 :
1) 가공 결과를 미리 예측하여 문제 발생 시 즉시 조치 할 수 있음
2) 불량 수량을 줄여 손실을 줄이고, 생산성을 향상 시킬 수 있음

6. 분석 결과 : 예측 정확도 100% (Best Model : CatBoost)
  • 가격3,800
  • 페이지수16페이지
  • 등록일2023.09.23
  • 저작시기2023.08
  • 파일형식기타(pptx)
  • 자료번호#1225048
본 자료는 최근 2주간 다운받은 회원이 없습니다.
청소해
다운로드 장바구니