AI 인공지능 데이터 분석) 자동차 센서값 학습을 통한 엔진 자동 검사 모델 만들기
본 자료는 5페이지 의 미리보기를 제공합니다. 이미지를 클릭하여 주세요.
닫기
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
해당 자료는 5페이지 까지만 미리보기를 제공합니다.
5페이지 이후부터 다운로드 후 확인할 수 있습니다.

소개글

AI 인공지능 데이터 분석) 자동차 센서값 학습을 통한 엔진 자동 검사 모델 만들기에 대한 보고서 자료입니다.

목차

1. 데이터 분석 배경
2. 데이터 분석 목적
3. 데이터 분석 효과
4. 데이터 학습 결과
5. 분석 환경
6. 학습데이터 구조
7. 데이터 분석(EDA) 및 가공
8. 학습 모델 구축 및 예측
- CNN
- XGBoost, LightGBM, CatBoost, RandomForest

본문내용

1. 문제 발생 장소 : Ford 자동차 제조사
2. 문제 발생 공정 : 엔진 상태 검사 공정

3. 문제 발생 내용 :
1) 자동차에서 엔진 이상 여부를 검사하기 위해 엔진을 들어내는 것은 큰 손실 발생
2) 고도로 숙련된 작업자만 엔진 이상여부를 판단 할 수 있음
3) 판단이 잘 못 될 경우, 차량 운행에서 문제가 발생 될 수 있음

4. 문제 해결 방안 :
1) 자동차에서 엔진을 들어내지 않고도 엔진 이상여부를 판단 할 수 있어야 함
2) 객관적인 데이터로 검사가 될 수 있어야 함

5. 데이터 분석 목적 :
1) 엔진을 차량에서 들어내지 않고도 객관적인 센서 데이터로 엔진상태를 판단 할 수 있는 모델 개발

6. 데이터 분석 효과 :
1) 엔진을 차량에서 들어내지 않으므로 시간과 비용의 손실을 줄일 수 있음
2) 고도로 숙련된 작업자가 필요 하지 않으므로 검사에 제약이 없음
3) 객관적인 데이터로 자동으로 판정하므로 사람의 실수가 없음

7. 모델 예측 정확도 : 97.4% (Best Model : CNN)
  • 가격3,800
  • 페이지수16페이지
  • 등록일2023.09.23
  • 저작시기2023.08
  • 파일형식기타(pptx)
  • 자료번호#1225047
본 자료는 최근 2주간 다운받은 회원이 없습니다.
청소해
다운로드 장바구니