
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20
-
21
-
22
-
23
-
24
-
25
-
26
-
27
-
28
-
29
-
30
-
31
-
32
-
33
-
34
-
35
-
36
-
37
-
38
-
39
-
40
-
41
-
42
-
43
-
44
-
45
-
46
-
47
-
48
-
49
-
50
-
51
-
52
-
53
-
54


본문내용
수동소자, 이것이 RF에서 어떤 영향을 받느냐. 수동소자로 간단히 구현 할 수 있는 게 공진기이다. 공진기를 이용해서 할 수 있는 게 필터설계, 임피던스 정합 등을 할 수 있다. 마지막에 RF대역에서 증폭기설계를 배우겠다. 먼저 배워야 할 게 RF대역에서의 능동소자 TR, 능동소자특성이 저주파대역에서 어떻게 다른가. 그 다음 선형증폭기, 다른 말로 소신호 증폭기를 어떻게 설계할 것인지를 배우도록 한다. 그러면 간단한 회로이론을 설명하기 위해 수동소자 RLC 특성을 고찰하기로 한다.
시간영역 주파수영역
저항: V=IR V=IR I= V/R
인덕터(no current jump)
V=L di/dt V=jωLI I=V/jωL
캐패시터(no voltage jump)
i=C dv/dt V=I/jωC I=jωCV
RLC는 시간영역과 주파수영역에서 서로 다른 모양을 갖게 된다. 시간영역에서 주파수영역으로 바꿀 때 리플라스, 푸리어 변환이 있는데 회로에서는 주로 라플라스변환을 쓴다. 시간영역에서 RLC에 관련된 V, I의 푸리어 변환 식이 나와있다. R는 거의 비슷하고 L에서 d/dt는 주파수 영역으로 넘어가면서 jw로 바뀐다.
시간영역 주파수영역
저항: V=IR V=IR I= V/R
인덕터(no current jump)
V=L di/dt V=jωLI I=V/jωL
캐패시터(no voltage jump)
i=C dv/dt V=I/jωC I=jωCV
RLC는 시간영역과 주파수영역에서 서로 다른 모양을 갖게 된다. 시간영역에서 주파수영역으로 바꿀 때 리플라스, 푸리어 변환이 있는데 회로에서는 주로 라플라스변환을 쓴다. 시간영역에서 RLC에 관련된 V, I의 푸리어 변환 식이 나와있다. R는 거의 비슷하고 L에서 d/dt는 주파수 영역으로 넘어가면서 jw로 바뀐다.
소개글