
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20
-
21
-
22
-
23
-
24
-
25
-
26
-
27
-
28
-
29
-
30
-
31
-
32
-
33
-
34
-
35
-
36
-
37
-
38
-
39
-
40
-
41
-
42
-
43
-
44
-
45
-
46
-
47
-
48
-
49
-
50
-
51
-
52
-
53
-
54
-
55
-
56
-
57
-
58
-
59
-
60
-
61
-
62
-
63
-
64
-
65
-
66
-
67
-
68
-
69
-
70
-
71
-
72
-
73
-
74
-
75
-
76
-
77
-
78
-
79
-
80
-
81
-
82
-
83
-
84
-
85
-
86
-
87
-
88
-
89
-
90
-
91
-
92
-
93


목차
1. 서론
2. 본론
1) 이분법
2) 할선법
3) 가위치법
4) 뉴튼-랩슨법
5) Aitken 델타제곱법
6) 뮬러
3. 결론
4. 별지
5. 소스 및 결과
2. 본론
1) 이분법
2) 할선법
3) 가위치법
4) 뉴튼-랩슨법
5) Aitken 델타제곱법
6) 뮬러
3. 결론
4. 별지
5. 소스 및 결과
본문내용
\na%i=%.10f", n, a);
printf("\tb%i=%.10f", n, b);
printf("\tp%i=%.10f", n, p3);
printf("\tf(p%i)=%.10f", n, f(p3));
z=sqrt(pow(p3-p2,2));
p0=p1;
p1=p2;
p2=p3;
}
}
double f(double x)
{
return(pow(x,2)-3);
}
6.3 뮬러법 e^x-3x^2 [0, 1] 10^-8
#include < stdio.h >
#include < math.h >
void Muller_Method(double, double, double, double);
double f(double);
void main(void)
{
printf("e^x-3x^2, [0,1], 10^-8");
double p0, p1, p2, er;
p0=0;
p1=0.5;
p2=1;
er=pow(10, -8);
Muller_Method(p0, p1, p2, er);
}
void Muller_Method(double p0, double p1, double p2, double er)
{
double p3, c, b, a, z;
p3=0;
c=0;
b=0;
a=0;
z=1;
int n=2;
for(;er*100
{
n=n+1;
c=f(p2);
b=(pow((p0-p2),2)*(f(p1)-f(p2))-pow((p1-p2),2)*(f(p0)-f(p2)))/((p0-p2)*(p1-p2)*(p0-p1));
a=((p1-p2)*(f(p0)-f(p2))-((p0)-(p2))*(f(p1)-f(p2)))/((p0-p2)*(p1-p2)*(p0-p1));
p3=p2-(2*c)/((b+sin(b)*sqrt(pow(b,2)-4*a*c)));
printf("\na%i=%.10f", n, a);
printf("\tb%i=%.10f", n, b);
printf("\tp%i=%.10f", n, p3);
printf("\tf(p%i)=%.10f", n, f(p3));
z=sqrt(pow(p3-p2,2));
p0=p1;
p1=p2;
p2=p3;
}
}
double f(double x)
{
return(pow(2.718281828,x)-3*pow(x,2));
}
6.4 뮬러법 e^x-3x^2 [3, 5] 10^-8
#include < stdio.h >
#include < math.h >
void Muller_Method(double, double, double, double);
double f(double);
void main(void)
{
printf("e^x-3x^2, [3,5], 10^-8");
double p0, p1, p2, er;
p0=3;
p1=4;
p2=5;
er=pow(10, -8);
Muller_Method(p0, p1, p2, er);
}
void Muller_Method(double p0, double p1, double p2, double er)
{
double p3, c, b, a, z;
p3=0;
c=0;
b=0;
a=0;
z=1;
int n=2;
for(;er*100
{
n=n+1;
c=f(p2);
b=(pow((p0-p2),2)*(f(p1)-f(p2))-pow((p1-p2),2)*(f(p0)-f(p2)))/((p0-p2)*(p1-p2)*(p0-p1));
a=((p1-p2)*(f(p0)-f(p2))-((p0)-(p2))*(f(p1)-f(p2)))/((p0-p2)*(p1-p2)*(p0-p1));
p3=p2-(2*c)/((b+sin(b)*sqrt(pow(b,2)-4*a*c)));
printf("\na%i=%.10f", n, a);
printf("\tb%i=%.10f", n, b);
printf("\tp%i=%.10f", n, p3);
printf("\tf(p%i)=%.10f", n, f(p3));
z=sqrt(pow(p3-p2,2));
p0=p1;
p1=p2;
p2=p3;
}
}
double f(double x)
{
return(pow(2.718281828,x)-3*pow(x,2));
}
6.5 뮬러법 g/2w^2(e^wt-e^-wt/2-sinwt-1.7 [-0.5,-0.1] 10^-8
#include < stdio.h >
#include < math.h >
void Muller_Method(double, double, double, double);
double f(double);
void main(void)
{
printf("g/2w^2(e^wt-e^-wt/2-sinwt-1.7), [-0.5,-0.1], 10^-8");
double p0, p1, p2, er;
p0=-0.4;
p1=-0.3;
p2=-0.2;
er=pow(10, -8);
Muller_Method(p0, p1, p2, er);
}
void Muller_Method(double p0, double p1, double p2, double er)
{
double p3, c, b, a, z;
p3=0;
c=0;
b=0;
a=0;
z=1;
int n=2;
for(;er*100
{
n=n+1;
c=f(p2);
b=(pow((p0-p2),2)*(f(p1)-f(p2))-pow((p1-p2),2)*(f(p0)-f(p2)))/((p0-p2)*(p1-p2)*(p0-p1));
a=((p1-p2)*(f(p0)-f(p2))-((p0)-(p2))*(f(p1)-f(p2)))/((p0-p2)*(p1-p2)*(p0-p1));
p3=p2-(2*c)/((b+sin(b)*sqrt(pow(b,2)-4*a*c)));
printf("\na%i=%.10f", n, a);
printf("\tb%i=%.10f", n, b);
printf("\tp%i=%.10f", n, p3);
printf("\tf(p%i)=%.10f", n, f(p3));
z=sqrt(pow(p3-p2,2));
p0=p1;
p1=p2;
p2=p3;
}
}
double f(double x)
{
return((-32.17/(2*pow(x,2)))*((pow(2.718281828,x)-pow(2.718281828,-x))/2-sin(x))-1.7);
}
printf("\tb%i=%.10f", n, b);
printf("\tp%i=%.10f", n, p3);
printf("\tf(p%i)=%.10f", n, f(p3));
z=sqrt(pow(p3-p2,2));
p0=p1;
p1=p2;
p2=p3;
}
}
double f(double x)
{
return(pow(x,2)-3);
}
6.3 뮬러법 e^x-3x^2 [0, 1] 10^-8
#include < stdio.h >
#include < math.h >
void Muller_Method(double, double, double, double);
double f(double);
void main(void)
{
printf("e^x-3x^2, [0,1], 10^-8");
double p0, p1, p2, er;
p0=0;
p1=0.5;
p2=1;
er=pow(10, -8);
Muller_Method(p0, p1, p2, er);
}
void Muller_Method(double p0, double p1, double p2, double er)
{
double p3, c, b, a, z;
p3=0;
c=0;
b=0;
a=0;
z=1;
int n=2;
for(;er*100
n=n+1;
c=f(p2);
b=(pow((p0-p2),2)*(f(p1)-f(p2))-pow((p1-p2),2)*(f(p0)-f(p2)))/((p0-p2)*(p1-p2)*(p0-p1));
a=((p1-p2)*(f(p0)-f(p2))-((p0)-(p2))*(f(p1)-f(p2)))/((p0-p2)*(p1-p2)*(p0-p1));
p3=p2-(2*c)/((b+sin(b)*sqrt(pow(b,2)-4*a*c)));
printf("\na%i=%.10f", n, a);
printf("\tb%i=%.10f", n, b);
printf("\tp%i=%.10f", n, p3);
printf("\tf(p%i)=%.10f", n, f(p3));
z=sqrt(pow(p3-p2,2));
p0=p1;
p1=p2;
p2=p3;
}
}
double f(double x)
{
return(pow(2.718281828,x)-3*pow(x,2));
}
6.4 뮬러법 e^x-3x^2 [3, 5] 10^-8
#include < stdio.h >
#include < math.h >
void Muller_Method(double, double, double, double);
double f(double);
void main(void)
{
printf("e^x-3x^2, [3,5], 10^-8");
double p0, p1, p2, er;
p0=3;
p1=4;
p2=5;
er=pow(10, -8);
Muller_Method(p0, p1, p2, er);
}
void Muller_Method(double p0, double p1, double p2, double er)
{
double p3, c, b, a, z;
p3=0;
c=0;
b=0;
a=0;
z=1;
int n=2;
for(;er*100
n=n+1;
c=f(p2);
b=(pow((p0-p2),2)*(f(p1)-f(p2))-pow((p1-p2),2)*(f(p0)-f(p2)))/((p0-p2)*(p1-p2)*(p0-p1));
a=((p1-p2)*(f(p0)-f(p2))-((p0)-(p2))*(f(p1)-f(p2)))/((p0-p2)*(p1-p2)*(p0-p1));
p3=p2-(2*c)/((b+sin(b)*sqrt(pow(b,2)-4*a*c)));
printf("\na%i=%.10f", n, a);
printf("\tb%i=%.10f", n, b);
printf("\tp%i=%.10f", n, p3);
printf("\tf(p%i)=%.10f", n, f(p3));
z=sqrt(pow(p3-p2,2));
p0=p1;
p1=p2;
p2=p3;
}
}
double f(double x)
{
return(pow(2.718281828,x)-3*pow(x,2));
}
6.5 뮬러법 g/2w^2(e^wt-e^-wt/2-sinwt-1.7 [-0.5,-0.1] 10^-8
#include < stdio.h >
#include < math.h >
void Muller_Method(double, double, double, double);
double f(double);
void main(void)
{
printf("g/2w^2(e^wt-e^-wt/2-sinwt-1.7), [-0.5,-0.1], 10^-8");
double p0, p1, p2, er;
p0=-0.4;
p1=-0.3;
p2=-0.2;
er=pow(10, -8);
Muller_Method(p0, p1, p2, er);
}
void Muller_Method(double p0, double p1, double p2, double er)
{
double p3, c, b, a, z;
p3=0;
c=0;
b=0;
a=0;
z=1;
int n=2;
for(;er*100
n=n+1;
c=f(p2);
b=(pow((p0-p2),2)*(f(p1)-f(p2))-pow((p1-p2),2)*(f(p0)-f(p2)))/((p0-p2)*(p1-p2)*(p0-p1));
a=((p1-p2)*(f(p0)-f(p2))-((p0)-(p2))*(f(p1)-f(p2)))/((p0-p2)*(p1-p2)*(p0-p1));
p3=p2-(2*c)/((b+sin(b)*sqrt(pow(b,2)-4*a*c)));
printf("\na%i=%.10f", n, a);
printf("\tb%i=%.10f", n, b);
printf("\tp%i=%.10f", n, p3);
printf("\tf(p%i)=%.10f", n, f(p3));
z=sqrt(pow(p3-p2,2));
p0=p1;
p1=p2;
p2=p3;
}
}
double f(double x)
{
return((-32.17/(2*pow(x,2)))*((pow(2.718281828,x)-pow(2.718281828,-x))/2-sin(x))-1.7);
}
추천자료
전세계의 모든 파일형식들 (파일 확장자 목록)
직접화일의 구현
자료구조 전위,중위,후위 순회
[영상처리] 히스토그램 평활화 및 각종 영상처리 (칼라)
bmp Image 변환 프로그램 10가지 효과 적용가능
Mini C 어휘분석기(Scanner)
알고리즘-머지-최적이진검색-최단프림
자료구조와 알고리즘 BFS (INTRODUCTION TO ALGORITHMS)
[VRML][VRML 정의][VRML 특징][VRML 기능][VRML 표준][VRML 응용분야][VRML 전개 방향]VRML의...
[전자공학,졸업작품,졸작]atmega128 (AVR), 적외선(포토)센서를 이용한 자동문
그래픽스 , meshranddering
마이크로 프로세서 프로젝트 최종보고서
[C/C++] 간단한 파일 전송 프로그램
[C/C++] 스레드(Thread)를 활용한 간단한 채팅 프로그램