목차
1. DC Motor의 원리
2. AC Motor의 원리
3. AC Servo Motor(브러시러스 서보 모터)의 원리
2. AC Motor의 원리
3. AC Servo Motor(브러시러스 서보 모터)의 원리
본문내용
2를 회전 전기자형, 그림 3을 회전계자형이라 부른다. 브러시러스 서보모터의 경우는 회전 계자형을 사용한다.
(그림 2.1.3) AC Motor의 기본 원리(2)회전 계자형
3. AC Servo Motor(브러시러스 서보 모터)의 원리
브러시러스 모터는 DC 모터가 가진 정류장치를 모터에서 떼어내고, 대신에 전원을 제어하여 회전자 위치에 맞는 전류를 흘리는 장치 즉, 드라이버에 의해 구동된다. DC 모터는 정류자의 갯수를 늘림으로서 토오크 리플을 적게 할수 있는데, 브러시러스 모터에서는 3상 권선으로 하고, 각 상의 전류를 구형파 혹은 정현파의 교번 전류를 흘러 구동한다.
그림 4의 (a),(b)는 3상 브러시러스 모터의 횡단면도이고, U+,U-,V+,V-,W+,W-는 각 권선의 시작과 끝이다.
(그림 2.1.4) 회전자계의 원리
모터에 그림 4의 (c)와 같은 3상 교류(정현파)가 통전되고 있을때, 시각 A점에 있어서 모터의 상태를 보면,U상만이 정(+)이고, V상과 W상 모두 부(-)이다. 그러므로 각 권선의 전류 방향은 그림 4의 (a)와 같이 되고 전류에 의해 유기된 자속의 합성 벡터는 N에서 S로 향하는 방향으로 발생한다. 이대 자속과 직각으로 교차하는 위치에 회전자의 자계가 있다고 하면 자석끼리의 반발력과 흡인력에 의해 회전자를 시계 방향으로 돌리는 토오크가 발생한다. 또, 시각 B점에 대해서도 같은 모양으로 검토해 보면, 권선에 의한 자속은 그림 4의 (b)와 같이 회전 방향에 60。어긋난 위치에 발생한다.
이와 같이 고정자 권선에 3상 교류(정현파 혹은 구형파) 전류를 흘리므로써 연속적인 회전자계를 얻을수 있다. 이 구동전류 위상을 회전자의 회전각에 대하여 항상 직교하는 형태로 맞출수 있다면 매끄러운 토오크를 내면서 효율이 좋은 모터를 브러시러스로 구성할수 있다.
(그림 2.1.5) AC 서보 모터 회전자 위치 검출 회로
(그림 2.1.6) AC 서보 모터 구동시스템의 구성
전류 지령을 위한 회전자 위치 검출기와 속도 검출기가 모터 축에 커플링으로 연결되어 있다.
그림 7에 전류제어 트랜지스터 PWM 인버터의 주회로를 나타낸다. PWM 인버터는 상전류를 피드백하기 때문에 PWM에 의해 모터 손실을 줄일수 있으며 도오크리플을 작게 할수 있다. 또한 트랜지스터에 흐르는 피크 전류도 작게 할수 있다.
(그림2.1.7) 전류제어형 트랜지스터 PWM 인버터의 주회로
그림 8에서는 서보모터 구동 시스템의 제어 블럭 다이아그램을 나타낸다. 회전자의 각위치 검출기로 부터의 신호에 의해 3상의 교류전류(정현파 혹은 구형파)를 발생시키고 그것에 저류 지령치가 곱해져 피드백된 3상 전류와 각각 비교한다.
(그림 2.1.8) AC 서보 모터 구동시스템의 제어블럭도
만일 모터 전류가 지령치에 비해 크게 되면 인버터는 전류를 작게하는 방향으로 스위칭하고, 반대로 모터 전류가 지령치에 비해 크게되면, 인버터는 전류를 크게 하는 방향으로 스위칭 하게 된다.
속도 신호는 각도 신호의 예측을 위해 피드백 되어, 계의 시간 지연을 작게하고 있다.
(그림 2.1.3) AC Motor의 기본 원리(2)회전 계자형
3. AC Servo Motor(브러시러스 서보 모터)의 원리
브러시러스 모터는 DC 모터가 가진 정류장치를 모터에서 떼어내고, 대신에 전원을 제어하여 회전자 위치에 맞는 전류를 흘리는 장치 즉, 드라이버에 의해 구동된다. DC 모터는 정류자의 갯수를 늘림으로서 토오크 리플을 적게 할수 있는데, 브러시러스 모터에서는 3상 권선으로 하고, 각 상의 전류를 구형파 혹은 정현파의 교번 전류를 흘러 구동한다.
그림 4의 (a),(b)는 3상 브러시러스 모터의 횡단면도이고, U+,U-,V+,V-,W+,W-는 각 권선의 시작과 끝이다.
(그림 2.1.4) 회전자계의 원리
모터에 그림 4의 (c)와 같은 3상 교류(정현파)가 통전되고 있을때, 시각 A점에 있어서 모터의 상태를 보면,U상만이 정(+)이고, V상과 W상 모두 부(-)이다. 그러므로 각 권선의 전류 방향은 그림 4의 (a)와 같이 되고 전류에 의해 유기된 자속의 합성 벡터는 N에서 S로 향하는 방향으로 발생한다. 이대 자속과 직각으로 교차하는 위치에 회전자의 자계가 있다고 하면 자석끼리의 반발력과 흡인력에 의해 회전자를 시계 방향으로 돌리는 토오크가 발생한다. 또, 시각 B점에 대해서도 같은 모양으로 검토해 보면, 권선에 의한 자속은 그림 4의 (b)와 같이 회전 방향에 60。어긋난 위치에 발생한다.
이와 같이 고정자 권선에 3상 교류(정현파 혹은 구형파) 전류를 흘리므로써 연속적인 회전자계를 얻을수 있다. 이 구동전류 위상을 회전자의 회전각에 대하여 항상 직교하는 형태로 맞출수 있다면 매끄러운 토오크를 내면서 효율이 좋은 모터를 브러시러스로 구성할수 있다.
(그림 2.1.5) AC 서보 모터 회전자 위치 검출 회로
(그림 2.1.6) AC 서보 모터 구동시스템의 구성
전류 지령을 위한 회전자 위치 검출기와 속도 검출기가 모터 축에 커플링으로 연결되어 있다.
그림 7에 전류제어 트랜지스터 PWM 인버터의 주회로를 나타낸다. PWM 인버터는 상전류를 피드백하기 때문에 PWM에 의해 모터 손실을 줄일수 있으며 도오크리플을 작게 할수 있다. 또한 트랜지스터에 흐르는 피크 전류도 작게 할수 있다.
(그림2.1.7) 전류제어형 트랜지스터 PWM 인버터의 주회로
그림 8에서는 서보모터 구동 시스템의 제어 블럭 다이아그램을 나타낸다. 회전자의 각위치 검출기로 부터의 신호에 의해 3상의 교류전류(정현파 혹은 구형파)를 발생시키고 그것에 저류 지령치가 곱해져 피드백된 3상 전류와 각각 비교한다.
(그림 2.1.8) AC 서보 모터 구동시스템의 제어블럭도
만일 모터 전류가 지령치에 비해 크게 되면 인버터는 전류를 작게하는 방향으로 스위칭하고, 반대로 모터 전류가 지령치에 비해 크게되면, 인버터는 전류를 크게 하는 방향으로 스위칭 하게 된다.
속도 신호는 각도 신호의 예측을 위해 피드백 되어, 계의 시간 지연을 작게하고 있다.
추천자료
직류모터에 대한 PID설계 및 지글러 니콜 설계
[경영학원론]웅진코웨이의 렌탈마케팅 및 서비스차별화 전략 (A+리포트)
[전동기(모터)][전동기(모터) 기본원리][전동기(모터) 용도][전동기(모터) 사용법]전동기(모...
정수처리과정의 개요 및 단위공정2
PID제어기 이용한 DC모터 (Servo 모터) 위치 제어 (Matlab 이용)
PID제어기 이용한 DC모터 (Servo 모터) 위치 제어 (Matlab 이용)
서보모터[servomotor]에 관해
[직류(직류연결)][직류회로]직류(직류연결)와 직류회로, 직류(직류연결)와 직류전동기, 직류(...
직류전동기(DC모터)의 개념, 직류전동기(DC모터)의 용도, 직류전동기(DC모터)와 타여자 발전...
[건설기계 유압제어] 건설기계 유압장치의 구성품 - 유압펌프, 유압 모터, 유압실린더, 유압...
[건설기계 유압제어] 건설기계 유압장치 - 유압의 개요, 유압장치의 구성품, 유압 펌프, 유압...
특별소비세 개요
자동차 제동원리인 ABS에 관한 작동원리와 구성품을 통한 학습 개요
AVR을 이용하여 서보모터 제어하기 (서보모터 제어방법,AVR,ATmega128,소스코드, 회로도,PWM,...
소개글