
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20
-
21
-
22
-
23
-
24
-
25
-
26
-
27
-
28
-
29
-
30
-
31
-
32
-
33
-
34
-
35
-
36
-
37
-
38
-
39
-
40
-
41
-
42
-
43
-
44
-
45
-
46


목차
제1장 데이터마이닝의 개요 제2장 데이터마이닝의 활용 제3장 자료의 탐색 제4장 군집분석 제5장 연관규칙의 발굴 제6장 나무모형과 앙상블 기법 제7장 신경망 모형 제8장 로지스틱 회귀모형과 평점표 - 각 장별 출제예상문제(해설포함)
본문내용
제1장 데이터 마이닝 개요 1. 데이터마이닝의 도입 배경 오늘날과 같은 정보화 시대에는 “유용한 정보”를 캐내는 데이터 마이닝(Data mining)이 중요해지고 있다. ? 정보처리 기술 발달: 1970년대의 정보처리 기술은 특정직의 전유물 이였고 1980년대로 접어들면서 정보접근이 용이, 1990년대에 인터넷 기술의 발전과 보급, 데이터웨어 하우징 기술의 발달로 대용량 데이터를 활용하여 분석, 다양한 형태의 의사결정이 가능해짐 ? CRM 도입: 정보를 효율적으로 수집, 활용하는 기업이 경쟁에서 우위를 차지하고, 고객의 요구 파악을 위해 고객정보를 축적, 이를 사용하게 되었다. 올바른 고객관리를 위해 데이터 마이닝 기법을 사용 2. 데이터 마이닝 개념 ① 정의: 다량의 가공하지 않은 데이터로부터 소량의 귀중한 정보를 찾는 과정. 즉, 거대한 데이터로부터 유익하고 가치 있는 정보를 찾는 과정 ② 기원: 데이터 마이닝은 컴퓨터 과학의 인공지능, 로봇비젼(vision), 패턴인식 등에 활용되는 기계학습 이론에서부터 시작 ③ 예: 문자인식, 신경망 또는 나무모형을 이용한 분류, 데이터분석 및 예측모형 적합. 통계학은 물론 컴퓨터 과학, 경영정보학 등 여러 학문 분야에서 연구 ④ 데이터 마이닝과 OLAP의 차이점 - OLAP(On-Line Analytical Processing): 데이터 베이스 조회(query) 도구 - OLAP의 분석은 통계적 분할표와 동일 → 다차원으로 분석하며 결과를 이해하기 쉽도록 시각화하여 차트형태로 제공하나 OLAP은 분석의 주요 변수를 파악하기 어려움. 반면 데이터 마이닝은 OLAP과 달리 결과를 유연하게 파악하여 일반화된 결론을 도출함 - OLAP은 두변수의 교차가 무엇인지 알 수 있는 반면 데이터마이닝은 두변수의 평면에서 목표변수를 분류하는 선 제공 - 중략 -