목차
1. 고대 인도수학이 수학에 끼친 영향 중 중요한 것들에 대하여 논하여라.
2. 3차방정식의 근의 발견문제는 오늘날 카르다노에게 그 공을 돌리고 있는데 그 이유에 대하여 논하여라.
3. 피타고라스 정리를 각자 독특한 방법을 사용하여 증명하라.
4. 방정식 의 여섯 근의 곱의 값은?
2. 3차방정식의 근의 발견문제는 오늘날 카르다노에게 그 공을 돌리고 있는데 그 이유에 대하여 논하여라.
3. 피타고라스 정리를 각자 독특한 방법을 사용하여 증명하라.
4. 방정식 의 여섯 근의 곱의 값은?
본문내용
근이 원추 곡선 끼리의 교점으로서
삼차방정식의 대수적 해법은 16세기 무렵에 볼로냐 대학의 시피오 델 페로가 발견한 것으로 여겨지고 있다.
(a1 및 a0 은 음수)
이런 형태의 공식이다. 당시에는 음수는 인정되지 않았기 때문에 계수는 아주 한정되어 있었다. 이 방정식 자체는 특수한 형태이지만, 일반적인 3차 방정식은 이 형태로 변형할 수 있기 때문에, 본질적으로는 3차 방정식은 델 페로가 풀었다고 해도 과언은 아니다. 또한 이 방정식의 경우는 계수의 부호의 제약으로부터 환원 불능이 되지 않는다. 델 페로는 이 해법을 공개하지 않고, 제자 몇 명에게만 알려준 뒤 1526년에 죽었다. 그리고 그 제자 중의 한 명인 안토니아 마리아 피올(Antonio Maria Fior)은 이 방법을 이용하여 당시에 성행했던 금전을 건 계산 승부에서 계속 이겼다. 3차 방정식의 해답이 있다고 하는 소문을 바탕으로 타르탈리아(Tartaglia)는 독자적인 힘인지는 몰라도
(a2 및 a0 는 정수)
의 형태의 3차 방정식을 푸는 것에 성공한 뒤 델·페로의 3차 방정식의 해법도 알아냈다. 타르타리아가 3차 방정식을 풀었다는 소문을 들은 피올은 소문을 믿지 않고 타르타리아에게 계산 승부에서 패배시켜 자신의 명성을 올리려고 하였지만, 델·페로의 3차 방정식의 해법 밖에 몰랐기 때문에 피올은 타르타리아와의 승부에서 지게 된다.
타르탈리아가 3차 방정식의 대수적 해법을 알고 있다고 듣게된 카르다노는 타르탈리아에게 간절히 부탁을 하여 3차 방정식의 해법을 알아냈다. 카르다노는 제자인 로도비코 페라리와 얻은, 일반적인 사차 방정식의 대수적 해법과 아울러, 3차 방정식의 대수적 해법을 출판하고 싶다고 생각했지만, 타르탈리아에게 해법을 비밀에 붙인다고 맹세했기 때문에 출판할 수는 없었다.
거기서, 일찍이 델 페로가 3차방정식의 대수적 해법을 얻었다고 하는 소문을 믿고 페라리와 볼로냐에 가서, 델 페로의 양자인 안니바레 델라 나베를 만나 델 페로의 유고를 보고 그것을 읽은 카르다노는 타르탈리아가 3차방정식을 푼 최초의 사람이 아닌 것을 알았으므로, 타르탈리아와의 약속을 무효화 시켜 1545년에 《아르스 마그나》(Ars Magna)를 출판해, 여러가지 형태의 3차 방정식의 해법을 공표했다.
이에, 3차 방정식의 해법은 “카르다노의 방법”으로도 불리게 되었다. 이 일은 타르탈리아를 격노시켜 논쟁으로 발전했지만, 카르다노는 《아르스 마그나》에서 델 페로와 타르탈리아의 공적에 대해 칭찬하고 있어, 3차 방정식의 해법이 카르다노 자신의 독자적인 방법이라고 속인 것은 아니다. 또한 타르탈리아로부터 해의 도출 방법까지는 묻지 않고 다양한 형태의 3차 방정식에 대한 해를 나타낸 일은 카르다노 자신의 업적이다.
3. 피타고라스 정리를 각자 독특한 방법을 사용하여 증명하라.
4. 방정식 의 여섯 근의 곱의 값은?
풀이) 6차 방정식의 근을 a,b,c,d,e,f 라고 하면 이 방정식은
이라는 가정이 되고
이라는 근과 계수와의 관계를 알수 있다.
따라서, 여섯근의 곱은 3이다.
정답) 3
삼차방정식의 대수적 해법은 16세기 무렵에 볼로냐 대학의 시피오 델 페로가 발견한 것으로 여겨지고 있다.
(a1 및 a0 은 음수)
이런 형태의 공식이다. 당시에는 음수는 인정되지 않았기 때문에 계수는 아주 한정되어 있었다. 이 방정식 자체는 특수한 형태이지만, 일반적인 3차 방정식은 이 형태로 변형할 수 있기 때문에, 본질적으로는 3차 방정식은 델 페로가 풀었다고 해도 과언은 아니다. 또한 이 방정식의 경우는 계수의 부호의 제약으로부터 환원 불능이 되지 않는다. 델 페로는 이 해법을 공개하지 않고, 제자 몇 명에게만 알려준 뒤 1526년에 죽었다. 그리고 그 제자 중의 한 명인 안토니아 마리아 피올(Antonio Maria Fior)은 이 방법을 이용하여 당시에 성행했던 금전을 건 계산 승부에서 계속 이겼다. 3차 방정식의 해답이 있다고 하는 소문을 바탕으로 타르탈리아(Tartaglia)는 독자적인 힘인지는 몰라도
(a2 및 a0 는 정수)
의 형태의 3차 방정식을 푸는 것에 성공한 뒤 델·페로의 3차 방정식의 해법도 알아냈다. 타르타리아가 3차 방정식을 풀었다는 소문을 들은 피올은 소문을 믿지 않고 타르타리아에게 계산 승부에서 패배시켜 자신의 명성을 올리려고 하였지만, 델·페로의 3차 방정식의 해법 밖에 몰랐기 때문에 피올은 타르타리아와의 승부에서 지게 된다.
타르탈리아가 3차 방정식의 대수적 해법을 알고 있다고 듣게된 카르다노는 타르탈리아에게 간절히 부탁을 하여 3차 방정식의 해법을 알아냈다. 카르다노는 제자인 로도비코 페라리와 얻은, 일반적인 사차 방정식의 대수적 해법과 아울러, 3차 방정식의 대수적 해법을 출판하고 싶다고 생각했지만, 타르탈리아에게 해법을 비밀에 붙인다고 맹세했기 때문에 출판할 수는 없었다.
거기서, 일찍이 델 페로가 3차방정식의 대수적 해법을 얻었다고 하는 소문을 믿고 페라리와 볼로냐에 가서, 델 페로의 양자인 안니바레 델라 나베를 만나 델 페로의 유고를 보고 그것을 읽은 카르다노는 타르탈리아가 3차방정식을 푼 최초의 사람이 아닌 것을 알았으므로, 타르탈리아와의 약속을 무효화 시켜 1545년에 《아르스 마그나》(Ars Magna)를 출판해, 여러가지 형태의 3차 방정식의 해법을 공표했다.
이에, 3차 방정식의 해법은 “카르다노의 방법”으로도 불리게 되었다. 이 일은 타르탈리아를 격노시켜 논쟁으로 발전했지만, 카르다노는 《아르스 마그나》에서 델 페로와 타르탈리아의 공적에 대해 칭찬하고 있어, 3차 방정식의 해법이 카르다노 자신의 독자적인 방법이라고 속인 것은 아니다. 또한 타르탈리아로부터 해의 도출 방법까지는 묻지 않고 다양한 형태의 3차 방정식에 대한 해를 나타낸 일은 카르다노 자신의 업적이다.
3. 피타고라스 정리를 각자 독특한 방법을 사용하여 증명하라.
4. 방정식 의 여섯 근의 곱의 값은?
풀이) 6차 방정식의 근을 a,b,c,d,e,f 라고 하면 이 방정식은
이라는 가정이 되고
이라는 근과 계수와의 관계를 알수 있다.
따라서, 여섯근의 곱은 3이다.
정답) 3
추천자료
수학과 수준별학습(수업, 교육과정)의 의미와 도입배경, 수학과 수준별학습(수업, 교육과정) ...
수학과 수준별교육과정의 성격과 수업유형, 수학과 수준별교육과정의 학습집단조직, 수학과 ...
수학과(수학교육)의 특성과 지도중점, 초등학교 수학과(수학교육)의 군개념지도와 곱셈지도, ...
수학과(수학교육)의 교육과정 성격, 수학과(수학교육)의 교육과정 목표, 수학과(수학교육) 교...
수학과교육 측정영역학습지도의 개념, 수학과교육 측정영역학습지도의 의의, 수학과교육 측정...
수학과(교육) 활동중심학습(수업)의 의미와 교육적 의의, 수학과(교육) 활동중심학습(수업)의...
수학과(수학교육) 문제해결(능력) 필요성, 수학과(수학교육) 문제해결(능력) 목적, 수학과(수...
수학교구(수학학습도구) 패턴블록(패턴블럭) 정의와 의의, 수학교구(수학학습도구) 패턴블록(...
수학교구 기하판(지오보드, 점판)의 의미와 유래, 수학교구 기하판(지오보드, 점판)의 필요성...
수학교구 탱그램(칠교놀이, 칠교판)의 도입과 의의, 수학교구 탱그램(칠교놀이, 칠교판)의 제...
수학과 놀이중심교육(놀이중심학습)의 필요성, 수학과 놀이중심교육(놀이중심학습)의 특성, ...
수학능력시험(수능시험)의 기본체제, 수학능력시험(수능시험)의 기본방향, 수학능력시험(수능...
수학과(수학수업, 수학교육)의 성격과 목적, 수학과(수학수업, 수학교육)의 실태와 교육중점,...
수학능력시험(수능시험) 외국어영역의 평가, 수학능력시험(수능시험) 외국어영역의 EBS강의와...
소개글