Fluid Mechanics-Frank M White Solution Ch4
닫기
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
해당 자료는 10페이지 까지만 미리보기를 제공합니다.
10페이지 이후부터 다운로드 후 확인할 수 있습니다.

소개글

Fluid Mechanics-Frank M White Solution Ch4에 대한 보고서 자료입니다.

본문내용

P4.1 An idealized velocity field is given by the formula

Is this flow field steady or unsteady? Is it two- or three-dimensional? At the point (x, y, z) = (–1, +1, 0), compute (a) the acceleration vector and (b) any unit vector normal to the acceleration. Solution: (a) The flow is unsteady because time t appears explicitly in the components. (b) The flow is three-dimensional because all three velocity components are nonzero. (c) Evaluate, by laborious differentiation, the acceleration vector at (x, y, z) = (−1, +1, 0). du dt = ∂ u ∂ t +u ∂ u ∂ x+v ∂ u ∂ y+w ∂ u ∂ z =4x+4tx(4t)−2t2y(0)+4xz(0)=4x+16t2x dv dt = ∂ v ∂ t +u ∂ v ∂ x+v ∂ v ∂ y+w ∂ v ∂ z =−4ty+4tx(0)−2t2y(−2t2)+4xz(0)=−4ty+4t4y dw dt = ∂ w ∂ t +u ∂ w ∂ x +v ∂ w ∂ y +w ∂ w ∂ z =0+4tx(4z)−2t2y(0)+4xz(4x)=16txz+16x2z
or: dV dt =(4x+16t2x)i+(−4ty+4t4y)j+(16txz+16x2z)k at (x, y, z) = (−1, +1, 0), we obtain (d) At (–1, +1, 0) there are many unit vectors normal to dV/dt. One obvious one is k. Ans.

P4.2 A three-dimensional flow field has the velocity given by V=4x2i+3xyj+5t(x+y)zk Find the local and total accelerations in terms of x, y, z, and t. Solution
Velocity  V=(4x2, 3xy, 5t(x+y)z) Local acceleration∂  V ∂t =(0, 0, 5(x+y)z)
Convective acceleration ax=u ∂ u ∂ x+v ∂ u ∂ y+w ∂ u ∂ z =(4x2)(8x)+(3xy)(0)+5t(x + y)z(0) =32x3

2

ay=u
∂ v ∂ x+v
∂ u ∂ y+w
∂ u ∂ z =(4x2)(3y)+(3xy)(3x)+5t(x + y)z(0) =12x2y+9x2y =21x2y az=u ∂ w ∂ x +v ∂ w ∂ y +w ∂ w ∂ z =(4x2)(5tz)+(3xy)(5tz)+5t(x + y)z(5t)(x + y) =20tx2z+15txyz+25t2(x+y)2z

Total acceleration = Local accel + convective accel ∂  v ∂ t =(32x3, 21x2y, 20tx2z + 15txyz + 25t2(x+y)2z+5(x+y)z)

키워드

  • 가격1,000
  • 페이지수69페이지
  • 등록일2019.04.25
  • 저작시기2018.1
  • 파일형식아크로뱃 뷰어(pdf)
  • 자료번호#1096830
본 자료는 최근 2주간 다운받은 회원이 없습니다.
청소해
다운로드 장바구니