-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20
-
21
-
22
-
23
-
24
-
25
-
26
-
27
-
28
-
29
-
30
-
31
-
32
-
33
-
34
-
35
-
36
-
37
-
38
-
39
-
40
-
41
-
42
-
43
-
44
-
45
-
46
-
47
-
48
-
49
-
50
-
51
-
52
-
53
-
54
-
55
-
56
-
57
-
58
-
59
-
60
-
61
-
62
-
63
-
64
-
65
-
66
-
67
-
68
-
69
-
70
-
71
-
72
-
73
-
74
-
75
-
76
-
77
-
78
-
79
-
80
-
81
-
82
-
83
-
84
-
85
-
86
-
87
-
88
-
89
-
90
-
91
-
92
-
93
-
94
-
95
-
96
-
97
-
98
-
99
-
100
-
101
-
102
-
103
-
104
-
105
-
106
-
107
-
108
-
109
-
110
-
111
-
112
-
113
-
114
-
115
-
116
-
117
-
118
-
119
-
120
-
121
-
122
본 자료는 10페이지 의 미리보기를 제공합니다. 이미지를 클릭하여 주세요.

-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20
-
21
-
22
-
23
-
24
-
25
-
26
-
27
-
28
-
29
-
30
-
31
-
32
-
33
-
34
-
35
-
36
-
37
-
38
-
39
-
40
-
41
-
42
-
43
-
44
-
45
-
46
-
47
-
48
-
49
-
50
-
51
-
52
-
53
-
54
-
55
-
56
-
57
-
58
-
59
-
60
-
61
-
62
-
63
-
64
-
65
-
66
-
67
-
68
-
69
-
70
-
71
-
72
-
73
-
74
-
75
-
76
-
77
-
78
-
79
-
80
-
81
-
82
-
83
-
84
-
85
-
86
-
87
-
88
-
89
-
90
-
91
-
92
-
93
-
94
-
95
-
96
-
97
-
98
-
99
-
100
-
101
-
102
-
103
-
104
-
105
-
106
-
107
-
108
-
109
-
110
-
111
-
112
-
113
-
114
-
115
-
116
-
117
-
118
-
119
-
120
-
121
-
122


본문내용
P6.1 An engineer claims that flow of SAE 30W oil, at 20°C, through a 5-cm-diameter smooth pipe at 1 million N/h, is laminar. Do you agree? A million newtons is a lot, so this sounds like an awfully high flow rate. Solution: For SAE 30W oil at 20°C (Table A.3), take ρ = 891 kg/m3 and µ = 0.29 kg/m-s. Convert the weight flow rate to volume flow rate in SI units:
Q = w ρ g = (1E6N/h)(1/3600h/s) (891kg/m3)(9.81m/s2) = 0.0318m3 s = π 4(0.05m)2V , solve V =16.2m s Calculate ReD = ρ VD µ = (891kg/m3)(16.2m/s)(0.05m) 0.29kg/m−s ≈ 2500 (transitional)
This is not high, but not laminar. Ans. With careful inlet design, low disturbances, and a very smooth wall, it might still be laminar, but No, this is transitional, not definitely laminar.
P6.2 Water flows through a 10-cm-diameter pipe at a rate of 10–4 m3/s. Evaluate the Reynolds number when the temperature is (a) 20°C, (b) 40°C, and (c) 60°C. Estimate the temperature at which transition to turbulence occurs. Solution: Reynolds number
Re = Vd V
but
V = 4Q π d2
∴ Re= 4Q π dV
Now d = 0.1 m, Q = 10–4 m3/s Viscosity is a function of temperature.
Temp (°C) V of water (m2 /s) Re 20 1.005 × 10–6 1,267 40 0.662 × 10–6 1,923 60 0.475 × 10–6 2,681
Recrit ~ 2300 happens when V = 0.554 × 10–6 m2/s, which is the kinematic viscosity of water at 50°C.
2
P6.3 The present pumping rate of North Slope crude oil through the Alaska Pipeline (see the chapter-opener photo) is about 600,000 barrels per day (1 barrel = 0.159 m3). What would be the maximum rate if the flow were constrained to be laminar? Assume that Alaskan crude oil fits Fig. A.1 of the Appendix at 60°C.
Solution: From Fig. A.1 for crude at 60°C, ρ = 0.86(1000) = 860 kg/m3 and µ = 0.0040 kg/m-s. From Eq. (6.2), the maximum laminar Reynolds number is about 2300. Convert the pipe diameter from 48 inches to 1.22 m. Solve for velocity:
Q = w ρ g = (1E6N/h)(1/3600h/s) (891kg/m3)(9.81m/s2) = 0.0318m3 s = π 4(0.05m)2V , solve V =16.2m s Calculate ReD = ρ VD µ = (891kg/m3)(16.2m/s)(0.05m) 0.29kg/m−s ≈ 2500 (transitional)
This is not high, but not laminar. Ans. With careful inlet design, low disturbances, and a very smooth wall, it might still be laminar, but No, this is transitional, not definitely laminar.
P6.2 Water flows through a 10-cm-diameter pipe at a rate of 10–4 m3/s. Evaluate the Reynolds number when the temperature is (a) 20°C, (b) 40°C, and (c) 60°C. Estimate the temperature at which transition to turbulence occurs. Solution: Reynolds number
Re = Vd V
but
V = 4Q π d2
∴ Re= 4Q π dV
Now d = 0.1 m, Q = 10–4 m3/s Viscosity is a function of temperature.
Temp (°C) V of water (m2 /s) Re 20 1.005 × 10–6 1,267 40 0.662 × 10–6 1,923 60 0.475 × 10–6 2,681
Recrit ~ 2300 happens when V = 0.554 × 10–6 m2/s, which is the kinematic viscosity of water at 50°C.
2
P6.3 The present pumping rate of North Slope crude oil through the Alaska Pipeline (see the chapter-opener photo) is about 600,000 barrels per day (1 barrel = 0.159 m3). What would be the maximum rate if the flow were constrained to be laminar? Assume that Alaskan crude oil fits Fig. A.1 of the Appendix at 60°C.
Solution: From Fig. A.1 for crude at 60°C, ρ = 0.86(1000) = 860 kg/m3 and µ = 0.0040 kg/m-s. From Eq. (6.2), the maximum laminar Reynolds number is about 2300. Convert the pipe diameter from 48 inches to 1.22 m. Solve for velocity:
추천자료
Fluid Mechanics-Frank M White Solution Ch4
Fluid Mechanics-Frank M White Solution Ch5
Fluid Mechanics-Frank M White Solution Ch1
Fluid Mechanics-Frank M White Solution Ch3
Fluid Mechanics-Frank M White Solution Ch7
Fluid Mechanics-Frank M White Solution Ch2
Fluid Mechanics-Frank M White Solution Ch8
Fluid Mechanics-Frank M White Solution Ch11
Fluid Mechanics-Frank M White Solution Ch10
소개글