-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20
-
21
-
22
-
23
-
24
-
25
-
26
-
27
-
28
-
29
-
30
-
31
-
32
-
33
-
34
-
35
-
36
-
37
-
38
-
39
-
40
-
41
-
42
-
43
-
44
-
45
-
46
-
47
-
48
-
49
-
50
-
51
-
52
-
53
-
54
-
55
-
56
-
57
-
58
-
59
-
60
-
61
-
62
-
63
-
64
-
65
-
66
-
67
-
68
-
69
-
70
-
71
-
72
-
73
-
74
-
75
-
76
-
77
-
78
-
79
-
80
-
81
-
82
-
83
-
84
-
85
-
86
-
87
-
88
-
89
-
90
-
91
-
92
-
93
-
94
-
95
-
96
-
97
-
98
-
99
-
100
-
101
-
102
-
103
-
104
-
105
-
106
-
107
-
108
-
109
-
110
-
111
-
112
-
113
-
114
-
115
-
116
본 자료는 10페이지 의 미리보기를 제공합니다. 이미지를 클릭하여 주세요.

-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20
-
21
-
22
-
23
-
24
-
25
-
26
-
27
-
28
-
29
-
30
-
31
-
32
-
33
-
34
-
35
-
36
-
37
-
38
-
39
-
40
-
41
-
42
-
43
-
44
-
45
-
46
-
47
-
48
-
49
-
50
-
51
-
52
-
53
-
54
-
55
-
56
-
57
-
58
-
59
-
60
-
61
-
62
-
63
-
64
-
65
-
66
-
67
-
68
-
69
-
70
-
71
-
72
-
73
-
74
-
75
-
76
-
77
-
78
-
79
-
80
-
81
-
82
-
83
-
84
-
85
-
86
-
87
-
88
-
89
-
90
-
91
-
92
-
93
-
94
-
95
-
96
-
97
-
98
-
99
-
100
-
101
-
102
-
103
-
104
-
105
-
106
-
107
-
108
-
109
-
110
-
111
-
112
-
113
-
114
-
115
-
116


본문내용
P3.1 Discuss Newton’s second law (the linear momentum relation) in these three forms: ∑F=ma ∑F= d dt(mV) ∑F= d dt V ρ d υ system ∫
Solution: These questions are just to get the students thinking about the basic laws of mechanics. They are valid and equivalent for constant-mass systems, and we can make use of all of them in certain fluids problems, e.g. the #1 form for small elements, #2 form for rocket propulsion, but the #3 form is control-volume related and thus the most popular in this chapter.
P3.2 Consider the angular-momentum relation in the form ∑MO = d dt (r×V) ρ d υ system ∫
What does r mean in this relation? Is this relation valid in both solid and fluid mechanics? Is it related to the linear-momentum equation (Prob. 3.1)? In what manner? Solution: These questions are just to get the students thinking about angular momentum versus linear momentum. One might forget that r is the position vector from the momentcenter O to the elements ρ d υ where momentum is being summed. Perhaps rO is a better notation.
P3.3 For steady laminar flow through a long tube (see Prob. 1.14), the axial velocity distribution is given by u = C(R2 − r2), where R is the tube outer radius and C is a constant. Integrate u(r) to find the total volume flow Q through the tube. Solution: The area element for this axisymmetric flow is dA = 2 π r dr. From Eq. (3.7),
Q= u dA= C 0 R ∫ (R2 −r2)2 π rdr=
π 2CR4 Ans.∫
2
P3.4 A fire hose has a 12.5-cm inside diameter and is flowing at 2.27 m3/min. The flow exits through a nozzle contraction at a diameter Dn. For steady flow, what should Dn be, in cm, to create an exit velocity of 25 m/s?
Solution: This is a straightforward one-dimensional steady-flow continuity problem. 2.27 m3/min = 0.038 m3/s;
Solution: These questions are just to get the students thinking about the basic laws of mechanics. They are valid and equivalent for constant-mass systems, and we can make use of all of them in certain fluids problems, e.g. the #1 form for small elements, #2 form for rocket propulsion, but the #3 form is control-volume related and thus the most popular in this chapter.
P3.2 Consider the angular-momentum relation in the form ∑MO = d dt (r×V) ρ d υ system ∫
What does r mean in this relation? Is this relation valid in both solid and fluid mechanics? Is it related to the linear-momentum equation (Prob. 3.1)? In what manner? Solution: These questions are just to get the students thinking about angular momentum versus linear momentum. One might forget that r is the position vector from the momentcenter O to the elements ρ d υ where momentum is being summed. Perhaps rO is a better notation.
P3.3 For steady laminar flow through a long tube (see Prob. 1.14), the axial velocity distribution is given by u = C(R2 − r2), where R is the tube outer radius and C is a constant. Integrate u(r) to find the total volume flow Q through the tube. Solution: The area element for this axisymmetric flow is dA = 2 π r dr. From Eq. (3.7),
Q= u dA= C 0 R ∫ (R2 −r2)2 π rdr=
π 2CR4 Ans.∫
2
P3.4 A fire hose has a 12.5-cm inside diameter and is flowing at 2.27 m3/min. The flow exits through a nozzle contraction at a diameter Dn. For steady flow, what should Dn be, in cm, to create an exit velocity of 25 m/s?
Solution: This is a straightforward one-dimensional steady-flow continuity problem. 2.27 m3/min = 0.038 m3/s;
추천자료
Fluid Mechanics-Frank M White Solution Ch4
Fluid Mechanics-Frank M White Solution Ch5
Fluid Mechanics-Frank M White Solution Ch1
Fluid Mechanics-Frank M White Solution Ch7
Fluid Mechanics-Frank M White Solution Ch6
Fluid Mechanics-Frank M White Solution Ch2
Fluid Mechanics-Frank M White Solution Ch8
Fluid Mechanics-Frank M White Solution Ch11
Fluid Mechanics-Frank M White Solution Ch10
소개글