목차
I. 서론
II. 본론
1. 전처리
2. 특징변환의 필요성
3. 특징(Feature)변환
4. 목표변환
5. 결측값 대체(Imputation)
6. 특징공학
7. ROCKET
8. Shapelets
III. 결론
IV. 참고문헌
II. 본론
1. 전처리
2. 특징변환의 필요성
3. 특징(Feature)변환
4. 목표변환
5. 결측값 대체(Imputation)
6. 특징공학
7. ROCKET
8. Shapelets
III. 결론
IV. 참고문헌
본문내용
I. 서론
데이터 분석 작업에 있어 전처리는 매우 중요한 작업이다. 특히나 시계열 데이터의 경우 본래의 특성으로 인하여 전처리 작업에 매우 유의해야 한다. 본 보고서에서는 시계열 데이터에 대한 전처리의 일환으로 특징 변환, 특징 공학측면에서 사용가능한 다양한 방법에 대해서 알아보도록 하겠다.
II. 본론
1. 전처리
1) 정의
- 실제 데이터는 지저분한데 이를 대상으로 클리닝 작업을 수행하는 것을 말한다.
2) 목표
- 특징의 예측 능력을 높이도록 한다.
- 해당 기계학습 모델의 예측 성능을 향상시키는 것을 목표로 한다.
데이터 분석 작업에 있어 전처리는 매우 중요한 작업이다. 특히나 시계열 데이터의 경우 본래의 특성으로 인하여 전처리 작업에 매우 유의해야 한다. 본 보고서에서는 시계열 데이터에 대한 전처리의 일환으로 특징 변환, 특징 공학측면에서 사용가능한 다양한 방법에 대해서 알아보도록 하겠다.
II. 본론
1. 전처리
1) 정의
- 실제 데이터는 지저분한데 이를 대상으로 클리닝 작업을 수행하는 것을 말한다.
2) 목표
- 특징의 예측 능력을 높이도록 한다.
- 해당 기계학습 모델의 예측 성능을 향상시키는 것을 목표로 한다.
소개글