목차
Ⅰ. 서 론
Ⅱ. 선행 연구
2.1. 외국 웹사이트 평가 영역
2.1.1. 연구문헌 평가 기준
2.1.2. 기업/기관 평가 기준
2.2. 국내 웹사이트 평가 영역
2.2.1. 연구문헌 평가 기준
2.2.2. 기업/기관 평가 기준
2.3. 웹사이트 평가 통합 모형
2.4. 재방문성 및 구매의도
Ⅲ. 연구 설계 및 검증
3.1. 연구모형
3.2. 연구대상 및 자료수집
3.3. 실증 분석
Ⅳ. 결 론
참고문헌
부 록
Ⅱ. 선행 연구
2.1. 외국 웹사이트 평가 영역
2.1.1. 연구문헌 평가 기준
2.1.2. 기업/기관 평가 기준
2.2. 국내 웹사이트 평가 영역
2.2.1. 연구문헌 평가 기준
2.2.2. 기업/기관 평가 기준
2.3. 웹사이트 평가 통합 모형
2.4. 재방문성 및 구매의도
Ⅲ. 연구 설계 및 검증
3.1. 연구모형
3.2. 연구대상 및 자료수집
3.3. 실증 분석
Ⅳ. 결 론
참고문헌
부 록
본문내용
, 1988, pp. 279-294.
18. Cuthbertson and Keith, Quantitative Financial Economics, Wiley&Sons Ltd, 1996.
19. Engle, Robert F., "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of U.K. Inflation," Econometrica, vol. 50, 1982, pp. 987- 1008.
20. Engle, Robert F. and Tim Bollerslev, "Modeling the Persistence of Conditional Variances," Econometric Reviews 5, 1986, pp. 1-50.
21. Fama, E. F. and K. R. French, "Permanent and Temporary Components of Stock Price," Journal of Political Economy, vol. 96, 1988, pp. 246-273.
22. Lamoureux, C. G. and W. D. Lastrapes, "Heteroskedasticity in Stock Return Data:Volume versus GARCH Effect," Journal of Finance 45, 1990, pp. 221-229.
23. Ljung, G. M. and G. E. Box, "On a Measure of Lack of Fit in Time Series Models," Biometrica 65, 1978, pp. 297-303.
24. Lucas, R. E., "Interest Rates and Currency Prices in a Two-country World," Journal of Money Economics 10, 1981, pp. 335-360.
25. Murphy, J. E., The random character of interest rates, Probus Publishing Company, Chicago, Illinois.
26. Nelson, D. B., "Conditional Heteroskedasticity in Asset Return : A New Approach," Econometrica, vol. 59, 1991, pp. 267-290.
27. Nowman, K. B., "Gaussian Estimation of Single-Factor Continuous Time Models of the Term Structure of Interest Rates," Journal of Finance 52, 1997, pp. 1695-1706.
28. Schwert, G. W. and P. J. Seguin, "Heteroscedasticity in Stock Return," Journal of Finance 45, 1990, pp. 1129-1155.
Selecting the Adequate Time Series Model for Forecasting Korean Corporate Bond Yield
Ku, Maeng-Hoe·Kim, Byoung-Gon·Park, Sang-Hyun
The purpose of this study is to find the adequate time series model for forecasting Korean corporate bond yield after the IMF financial crisis, and to compare actual data after the sample period with forecast data using applied models. Therefore the research methods implemented are to estimate mean regression formula of corporate bond yield using ARIMA(p,d,q) models , to test conditional heteroscedasticity of the residuals and to choose proper models forecasting corporate bond yield using ARIMA(p,d,q)-GARCH(p,q) models.
The results of empirical study are as follows. First, the mean regression formula are estimated to AR(1) and MA(1) models but the fitness degree of that formula are low. Second, there are the conditional heteroscedasticity of the residuals of that formula after testing. Third, after considering heteroscedasticity simultaneously AR(1)-GARCH(1,1) and MA(1)-GARCH(1,1) models are chosen for forecasting Korean corporate bond yield after the IMF crisis and the fitness degree of models are high also. Finally, the forecasting power of two models using mean squared errors and correlation are similar.
As a reference, comparison of actual data after the sample period with forecast data using applied models guarantees prior results.
Key Words :
forecasting Korean corporate bond yield, conditional heteroscedasticity of the residuals, ARIMA(p,d,q)-GARCH(p,q) models
18. Cuthbertson and Keith, Quantitative Financial Economics, Wiley&Sons Ltd, 1996.
19. Engle, Robert F., "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of U.K. Inflation," Econometrica, vol. 50, 1982, pp. 987- 1008.
20. Engle, Robert F. and Tim Bollerslev, "Modeling the Persistence of Conditional Variances," Econometric Reviews 5, 1986, pp. 1-50.
21. Fama, E. F. and K. R. French, "Permanent and Temporary Components of Stock Price," Journal of Political Economy, vol. 96, 1988, pp. 246-273.
22. Lamoureux, C. G. and W. D. Lastrapes, "Heteroskedasticity in Stock Return Data:Volume versus GARCH Effect," Journal of Finance 45, 1990, pp. 221-229.
23. Ljung, G. M. and G. E. Box, "On a Measure of Lack of Fit in Time Series Models," Biometrica 65, 1978, pp. 297-303.
24. Lucas, R. E., "Interest Rates and Currency Prices in a Two-country World," Journal of Money Economics 10, 1981, pp. 335-360.
25. Murphy, J. E., The random character of interest rates, Probus Publishing Company, Chicago, Illinois.
26. Nelson, D. B., "Conditional Heteroskedasticity in Asset Return : A New Approach," Econometrica, vol. 59, 1991, pp. 267-290.
27. Nowman, K. B., "Gaussian Estimation of Single-Factor Continuous Time Models of the Term Structure of Interest Rates," Journal of Finance 52, 1997, pp. 1695-1706.
28. Schwert, G. W. and P. J. Seguin, "Heteroscedasticity in Stock Return," Journal of Finance 45, 1990, pp. 1129-1155.
Selecting the Adequate Time Series Model for Forecasting Korean Corporate Bond Yield
Ku, Maeng-Hoe·Kim, Byoung-Gon·Park, Sang-Hyun
The purpose of this study is to find the adequate time series model for forecasting Korean corporate bond yield after the IMF financial crisis, and to compare actual data after the sample period with forecast data using applied models. Therefore the research methods implemented are to estimate mean regression formula of corporate bond yield using ARIMA(p,d,q) models , to test conditional heteroscedasticity of the residuals and to choose proper models forecasting corporate bond yield using ARIMA(p,d,q)-GARCH(p,q) models.
The results of empirical study are as follows. First, the mean regression formula are estimated to AR(1) and MA(1) models but the fitness degree of that formula are low. Second, there are the conditional heteroscedasticity of the residuals of that formula after testing. Third, after considering heteroscedasticity simultaneously AR(1)-GARCH(1,1) and MA(1)-GARCH(1,1) models are chosen for forecasting Korean corporate bond yield after the IMF crisis and the fitness degree of models are high also. Finally, the forecasting power of two models using mean squared errors and correlation are similar.
As a reference, comparison of actual data after the sample period with forecast data using applied models guarantees prior results.
Key Words :
forecasting Korean corporate bond yield, conditional heteroscedasticity of the residuals, ARIMA(p,d,q)-GARCH(p,q) models
추천자료
삼성전자 분석
전자정부 실현에 있어서 문제점과 해결책
미국 전자정부의 현황
LG전자의 금전적 보상과 비금전적 보상에 따른 보상제도
LG 전자의 해외진출사례(팀프로젝트)
미국의 전자정부
정보화시대의 전자화폐의 추진과정과 현황 그리고 미래의 발전방향에 대하여 조사한 리포트입...
선진국의 전자정부 동향 -- 미국, 영국, 일본 중심
지방 전자정부의 문제점과 개선방안.
서울시의 전자정부 사례.
정보체계론 전자정부와 행정의 변화
국제경영 삼성전자의 아웃소싱 전략
말레이시아의 전자정부
조직구조적 관점-삼성전자의 위기대응전략,SK의 기업문화와 윤리경영,삼성과 SK 비교,윤리경...