연료전지와 적용사례
닫기
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
해당 자료는 10페이지 까지만 미리보기를 제공합니다.
10페이지 이후부터 다운로드 후 확인할 수 있습니다.

목차

I. 연료전지 (Fuel Cell)

1. 연료전지의 원리와 특징

2. 연료전지(Fuel Cell)의 종류 및 장단점

2-1. 인산염 연료전지(Phosphoric Acid Fuel Cell)
2-2. 용융탄산염 연료전지(Molten Carbonate Fuel Cell)
2-3. 알카라인 연료전지(Alkaline Fuel Cell)
2-4. 고체산화물 연료전지(Solid Oxide Fuel Cell)
2-5. 고분자 분리막 연료전지(Polymer Membrane Fuel Cell)

3. 연료전지(Fuel Cell)의 역사와 현재



II. 연료 전지 자동차

1. 대체연료 자동차(Green Car)의 현황와 문제점들

2. 연료전지 자동차의 현재와 미래

2-1. 연료전지 자동차의 동향과 대응
(외국 기업의 대응)

2-2. 연료전지 자동차에 관한 최신 뉴스
2-3. 연료전지 자동차로 가기위한 대안(hybrid car)
-현재 양산되고 있는 하이브리드 자동차들

본문내용

연료전지(Fuel Cell)란 기존의 연료가 가지고 있는 화학에너지, 즉 연소 에너지를 연속적으로 직접 전기에너지로 변환시키는 에너지 변환 장치이다.
연료전지의 원리를 따져보기 전에 전기의 발생원리부터 생각해보면, 전기는 석탄, 석유, 천연가스 등의 화석연료를 연소시켜 발전하는 화력발전 방식으로 얻어진다. 이러한 화력발전은 연료의 화학에너지가 열에너지에서 기계적 에너지로, 여기에서 다시 전기에너지로 변화하는 3단계의 과정을 거쳐 전기를 발생시키는 발전방식이다. 즉 연료의 화학에너지를 연소를 통해 스팀(열)으로 변화시키고, 이를 다시 기계적 터빈 회전력을 통해 전기에너지를 발생시키는 변환 과정이다. 하지만 연료전지는 중간과정 없이 화학에너지에서 바로 전기에너지로 직접 변환된다. 천연가스나 메탄올 등의 연료에서 얻어낸 수소와 공기 중의 산소를 반응시키면, 전기에너지를 직접 얻을 수 있다는 말이다. 이러한 원리는 물을 전기분해하면 수소와 산소가 발생된다는 것을 역으로 이용한 것이다. 수소와 산소를 반응시키면 연소반응에 의해 열이 발생하면서 물이 되는데, 이때 수소와 산소를 직접 반응시키는 대신 연료전지를 통해 전기화학반응이 일어나게 하면 물과 열 이외에도 전기를 발생시킬 수 있다.
  • 가격3,300
  • 페이지수32페이지
  • 등록일2002.09.22
  • 저작시기2002.09
  • 파일형식워드(doc)
  • 자료번호#203882
본 자료는 최근 2주간 다운받은 회원이 없습니다.
청소해
다운로드 장바구니