목차
1. 들어가기
2. 공간
3. 도형
1) 첫째 단계(3세)
2) 둘째 단계(4, 5세)
3) 둘째 단계(6, 7세)
4. 입체도형과 평면도형
5. 길 따라가기, 대칭, 합동
6. 교수-학습에 있어서 유의사항
참고문헌
2. 공간
3. 도형
1) 첫째 단계(3세)
2) 둘째 단계(4, 5세)
3) 둘째 단계(6, 7세)
4. 입체도형과 평면도형
5. 길 따라가기, 대칭, 합동
6. 교수-학습에 있어서 유의사항
참고문헌
본문내용
각형과 사격형의 차이점을 구별할 수 없다는 말임
▶ 수준 1에서 유아들은 모양을 전체로 받아들이는 수준을 넘어 도형의 속성에 초점을 둠.
▶ 유아들은 속성에 근거하여 놀이하고 구성하고 모델을 만들고 그것들을 분류하기를 계속함.
▶ 이 시기 유아들은 3차원 도형을 평평한 표면이나 각의 수를 준거로 모음.
▶ 수준1에 있는 유아들은 도형을 묘사할 때, 관찰이나 조작 또는 실험 활동을 통하여 모양의 특성을 이해하고 표현함.
▶ 수준1의 유아는 2차원 도형을 가지고 활동하고 조직하지만, 수준 0의 유아는 3차원의 도형을 가지고 활동한다는 것임.
▶ 유아들은 새로운 개념을 탐색할 때는 더 낮은 수준의사고로 하향할 수 있으며, 개별적으로 서로 다른 수준에 있기 때문에 다양한 활동이 제공되어야 함.
▶ 3~5세 유아는 기하 도형에 대해 학습할 수 있음.
▶ 유치원 수학 프로그램에 기하학적 탐색을 포함시켜야 함을 강조하고, 그렇게 함으로써 유아들에게 물체를 비교하고, 크기와 모양 등의 속성에 따라 분류하고 배열하며, 패턴과 대칭 그리고 균형을 실험하고, 공간에서 크기와 방향 그리고 위치의 관계를 탐색할 수 있는 기회를 제공한다는 것임.
▶ 유아들은 주변환경에서 형태의 유사점과 차이점을 발견함.
▶ 유아들은 다양한 방법으로 모양을 탐색하며, 난이도의 네 단계는 학습과정의 범위를 잡을 수 있게 해 줌.
- 수준 1 : 어떤 하나의 형태를 유사한 모양과 짝 맞추기
(삼각형 그림 위에 삼각형 놓기)
- 수준 2 : 비슷한 모양끼리 모으기
(한 집합에서 삼각형만 놓고, 다른 집합에는 동그라미만 놓기)
- 수준 3 : 모양 이름 말하기 (이것은 무슨 모양이니?)
- 수준 4 : 모양 그리기
(한 모델을 그대로 그리거나 기억해서 그릴 수는 있으나 어려움이 있음)
4. 입체도형과 평면도형
▶ 유치원 교실에서 쉽게 찾을 수 있는 입체도형은 구, 원기둥, 원뿔, 정육면체, 직육면체 등이고, 평면도형은 원, 삼각형, 정삼각형, 직사각형, 마름모꼴, 타원 등임.
▶ 기하학적 내용으로 운동기하, 협응기하, 선대칭, 합동을 들 수 있음.
▶ 운동기하에 대한 학습은 모양들을 공간 속에서 미끄러지거나 방향을 바꾸거나 회전에 의해 이동시켜도 그 모양을 인식함.
▶ 패턴블록 활동은 운동기하를 경험하는 기회를 제공함.
▶ 탱그램, 퍼즐 조각을 사용하는 것 또한 운동기하의 개념을 학습하는 일임.
5. 길 따라가기, 대칭, 합동
▶ 길 따라가기, 지도 만들기와 격자 위에서 게임하기는 협응기하의 비형식적 지식을 개발시킴.
▶ 협응체계를 사용함으로써 지도에서 어떤 특정 거리의 위치를 찾을 수 있음.
▶ 선대칭은 두 개의 합동되는 도형들, 얼굴에 비친 반쪽들, 대칭의 선들은 물체, 사진, 그림 또는 디자인이 두 개의 똑같은 조각으로 나누어질 수 있을 때 볼 수 있음.
예) 나비, 나뭇잎, 꽃, 사람 등이 대칭선을 가짐
▶ 합동은 도형들이 같은 크기이고 같은 모양이면 그 도형들을 말함
6. 교수-학습에 있어서 유의사항
▶ 3, 4세 유아는 유아교육기관에 오기 전에 3차원 세계와의 상호작용에 근거한 기하개념을 이미 가지고 있으므로 이러한 개념의 확장을 위해 많은 탐색을 할 수 있는 환경을 마련해 주는 것이 주요함.
▶ 소꿉놀이 영역은 입체의 위치와 운동을 탐색하는 기회뿐만이 아니라 3차원 공간을 채우는 연습 기회를 갖음.
▶ 평면도형 활동으로 기하를 시작하기 쉬운데, 입체도형에서 시작하는 것이 바람직함.
▶ 입체도형의 탐색에서부터 - 입체도형의 한 면과 같은 모양의 평면도형을 붙이거나 입체도형들을 펼쳐봄으로써-평면도형 활동으로 옮겨짐.
▶ 5세 유아는 어떤 물체가 삼각형, 정삼각형, 또는 정육면체인가의 구체적인 특성보다는 일상생활 용어를 사용하여 모양을 설명함.
▶ 유아 단계의 수학교육에서는 공간 과계 및 기하학적 개념을 가르쳐야 한다면 유아의 발달적인 측면을 고려해야 함.
▶ 유아의 삼각형, 사각형, 원 등의 기하학적 모양의 이해는 공간의 물리적 지식으로써 이루어짐. 즉, 어떤 물체가 다른 물체와 얼마나 가까운지, 위에 있는지, 앞에 있는지 등의 위상수학적 개념의 이해로 시작해야 함.
▶ 근접개념을 이해한다거나 분리, 순서, 안/밖의 개념에 대해서 가르쳐 주는 것이 중요함. 또 도형은 평면도형 활동으로 기하를 시작하기 쉬운데, 입체도형에서 시작하는 것이 바람직함.
참고문헌
권영례 저, 유아수학교육, 양서원 2014
정연희 저, 유아수학교육, 창지사 2014
박근주, 김현자 외 저, 유아 수학교육, 창지사 2014
▶ 수준 1에서 유아들은 모양을 전체로 받아들이는 수준을 넘어 도형의 속성에 초점을 둠.
▶ 유아들은 속성에 근거하여 놀이하고 구성하고 모델을 만들고 그것들을 분류하기를 계속함.
▶ 이 시기 유아들은 3차원 도형을 평평한 표면이나 각의 수를 준거로 모음.
▶ 수준1에 있는 유아들은 도형을 묘사할 때, 관찰이나 조작 또는 실험 활동을 통하여 모양의 특성을 이해하고 표현함.
▶ 수준1의 유아는 2차원 도형을 가지고 활동하고 조직하지만, 수준 0의 유아는 3차원의 도형을 가지고 활동한다는 것임.
▶ 유아들은 새로운 개념을 탐색할 때는 더 낮은 수준의사고로 하향할 수 있으며, 개별적으로 서로 다른 수준에 있기 때문에 다양한 활동이 제공되어야 함.
▶ 3~5세 유아는 기하 도형에 대해 학습할 수 있음.
▶ 유치원 수학 프로그램에 기하학적 탐색을 포함시켜야 함을 강조하고, 그렇게 함으로써 유아들에게 물체를 비교하고, 크기와 모양 등의 속성에 따라 분류하고 배열하며, 패턴과 대칭 그리고 균형을 실험하고, 공간에서 크기와 방향 그리고 위치의 관계를 탐색할 수 있는 기회를 제공한다는 것임.
▶ 유아들은 주변환경에서 형태의 유사점과 차이점을 발견함.
▶ 유아들은 다양한 방법으로 모양을 탐색하며, 난이도의 네 단계는 학습과정의 범위를 잡을 수 있게 해 줌.
- 수준 1 : 어떤 하나의 형태를 유사한 모양과 짝 맞추기
(삼각형 그림 위에 삼각형 놓기)
- 수준 2 : 비슷한 모양끼리 모으기
(한 집합에서 삼각형만 놓고, 다른 집합에는 동그라미만 놓기)
- 수준 3 : 모양 이름 말하기 (이것은 무슨 모양이니?)
- 수준 4 : 모양 그리기
(한 모델을 그대로 그리거나 기억해서 그릴 수는 있으나 어려움이 있음)
4. 입체도형과 평면도형
▶ 유치원 교실에서 쉽게 찾을 수 있는 입체도형은 구, 원기둥, 원뿔, 정육면체, 직육면체 등이고, 평면도형은 원, 삼각형, 정삼각형, 직사각형, 마름모꼴, 타원 등임.
▶ 기하학적 내용으로 운동기하, 협응기하, 선대칭, 합동을 들 수 있음.
▶ 운동기하에 대한 학습은 모양들을 공간 속에서 미끄러지거나 방향을 바꾸거나 회전에 의해 이동시켜도 그 모양을 인식함.
▶ 패턴블록 활동은 운동기하를 경험하는 기회를 제공함.
▶ 탱그램, 퍼즐 조각을 사용하는 것 또한 운동기하의 개념을 학습하는 일임.
5. 길 따라가기, 대칭, 합동
▶ 길 따라가기, 지도 만들기와 격자 위에서 게임하기는 협응기하의 비형식적 지식을 개발시킴.
▶ 협응체계를 사용함으로써 지도에서 어떤 특정 거리의 위치를 찾을 수 있음.
▶ 선대칭은 두 개의 합동되는 도형들, 얼굴에 비친 반쪽들, 대칭의 선들은 물체, 사진, 그림 또는 디자인이 두 개의 똑같은 조각으로 나누어질 수 있을 때 볼 수 있음.
예) 나비, 나뭇잎, 꽃, 사람 등이 대칭선을 가짐
▶ 합동은 도형들이 같은 크기이고 같은 모양이면 그 도형들을 말함
6. 교수-학습에 있어서 유의사항
▶ 3, 4세 유아는 유아교육기관에 오기 전에 3차원 세계와의 상호작용에 근거한 기하개념을 이미 가지고 있으므로 이러한 개념의 확장을 위해 많은 탐색을 할 수 있는 환경을 마련해 주는 것이 주요함.
▶ 소꿉놀이 영역은 입체의 위치와 운동을 탐색하는 기회뿐만이 아니라 3차원 공간을 채우는 연습 기회를 갖음.
▶ 평면도형 활동으로 기하를 시작하기 쉬운데, 입체도형에서 시작하는 것이 바람직함.
▶ 입체도형의 탐색에서부터 - 입체도형의 한 면과 같은 모양의 평면도형을 붙이거나 입체도형들을 펼쳐봄으로써-평면도형 활동으로 옮겨짐.
▶ 5세 유아는 어떤 물체가 삼각형, 정삼각형, 또는 정육면체인가의 구체적인 특성보다는 일상생활 용어를 사용하여 모양을 설명함.
▶ 유아 단계의 수학교육에서는 공간 과계 및 기하학적 개념을 가르쳐야 한다면 유아의 발달적인 측면을 고려해야 함.
▶ 유아의 삼각형, 사각형, 원 등의 기하학적 모양의 이해는 공간의 물리적 지식으로써 이루어짐. 즉, 어떤 물체가 다른 물체와 얼마나 가까운지, 위에 있는지, 앞에 있는지 등의 위상수학적 개념의 이해로 시작해야 함.
▶ 근접개념을 이해한다거나 분리, 순서, 안/밖의 개념에 대해서 가르쳐 주는 것이 중요함. 또 도형은 평면도형 활동으로 기하를 시작하기 쉬운데, 입체도형에서 시작하는 것이 바람직함.
참고문헌
권영례 저, 유아수학교육, 양서원 2014
정연희 저, 유아수학교육, 창지사 2014
박근주, 김현자 외 저, 유아 수학교육, 창지사 2014
추천자료
(놀이지도B형)놀이 종류 중 하나를 선정(쌓기놀이)하고 구체적인 놀이 활동을 유아에게 실시...
영유아 보육프로그램의 종류별 특성과 설명
유아(유아교육) 탐구생활의 성격, 유아(유아교육) 탐구생활의 목표와 유아(유아교육) 탐구생...
[유아교육]유아교재연구 및 지도법 (수학교육, 과학교육, 조작놀이 교육)
[유아교육]유아교재연구 및 지도법 발표(수학교육, 과학교육)
ICT 교과 교안작성을 위한 삼차원 컴퓨터그래픽 활용 제안
프뢰벨 가베수업의 실제(1~10 은물까지의 수업방법 요약)
초등수학 이론
유아 수학활동프로그램 계획안)
[아동수학지도] 수학교육의 내용 중 한가지를 정하여 관련 활동에 대한 계획안을 제시하시오 ...
[아동수학지도] 표준보육과정과 누리과정 자연탐구 영역의 수학교육의 내용을 정리하시고 영...
아동수학교육의 내용에 대하여 논의하고 그 중 한 가지를 선택하여 실제교육계획안을 작성. ...
[아동수학교육] 아동수학교육의 운영에 있어 교사의 역할과 교수학습의 원리에 대해서 작성하...
누리과정에 기초한 영유아 수학교육활동에 대한 본인의 견해에 대해 논의하시오
소개글