노이즈가 섞여있는 데이터를 어떻게 피팅할까?: RANSAC을 중심으로
본 자료는 미만의 자료로 미리보기를 제공하지 않습니다.
닫기
  • 1
  • 2
  • 3
해당 자료는 1페이지 까지만 미리보기를 제공합니다.
1페이지 이후부터 다운로드 후 확인할 수 있습니다.

소개글

노이즈가 섞여있는 데이터를 어떻게 피팅할까?: RANSAC을 중심으로에 대한 보고서 자료입니다.

본문내용

노이즈에 강한 모델 찾기

단순한 방법은 이상치 데이터를 식별하여 제거하는 것이다. 하지만, 어떤 데이터를 이상치로 간주할 것인지가 문제이다. 데이터마다 특성이 다르기 때문에, 어떤 기준으로 이상치를 판단할지는 상황에 따라 달라진다.

이러한 어려움을 극복하기 위해, 노이즈에 강한 모델을 찾는 것이 중요하다. 모델이 노이즈 데이터에 영향을 받지 않고, 데이터의 주요 패턴을 잘 학습할 수 있어야 한다는 점이다. 노이즈에 강한 모델을 찾기 위한 방법 중 하나가 바로 RANSAC이다. RANSAC은 1981년 Fischler와 Bolles에 의해 처음 제안된 알고리즘으로, 주어진 데이터에서 무작위로 샘플을 선택해 모델을 적합시키고, 그 모델을 기반으로 데이터의 다른 부분을 평가하는 과정을 반복한다.

RANSAC의 핵심 아이디어는 노이즈가 많은 데이터에서도 다수의 정상 데이터를 통해 신뢰할 수 있는 모델을 찾아내는 것이다. 알고리즘은 무작위로 선택된 데이터 샘플을 사용하여 모델을 생성하고, 그 모델이 얼마나 많은 데이터를 설명할 수 있는지를 평가한다. 이 과정에서 이상치는 모델 적합성 평가에서 제외되므로, 최종 모델은 노이즈에 강건하게 된다.

이 알고리즘은 특히 이상치가 많아 일반적인 회귀 분석 방법이 실패하는 상황에서 유용하다. 예를 들어, 컴퓨터 비전에서 객체 인식, 3D 재구성, 이미지 정합 등 다양한 응용 분야에서 RANSAC은 중요한 역할을 한다. 그 이유는 이미지 데이터가 종종 노이즈와 이상치로 가득 차 있기 때문이다. RANSAC을 사용하면 이러한 노이즈의 영향을 최소화하고 정확한 모델을 얻을 수 있다.

키워드

python,   regression,   fitting,   회귀,   그래프,   코드,   노이즈,   이상치,   ransac,   파이썬
  • 가격1,900
  • 페이지수3페이지
  • 등록일2024.07.27
  • 저작시기2024.07
  • 파일형식기타(docx)
  • 자료번호#1257584
본 자료는 최근 2주간 다운받은 회원이 없습니다.
청소해
다운로드 장바구니