목차
1 평면도형의 성질 - 다각형
2 원과 부채꼴
3 원과 직선의 위치 관계
4 입체 도형 - 다면체
2 원과 부채꼴
3 원과 직선의 위치 관계
4 입체 도형 - 다면체
본문내용
에 있는 선분은?
(1) 정사면체 (2) 3개 (3) 선분 CF
[입체도형]
다음 입체도형 중 서로 평행인 면이 한 쌍도 없는 것은? ⑤
① 사각뿔대② 정팔면체③ 사각기둥
▶
④ 원뿔대⑤ 정사면체
정사면체는 서로 평행인 면이 없다.
[정팔면체] ★
정팔면체에 대한 설명 중 틀린 것은? ④
① 정삼각형으로만 이루어져 있다.
② 모든 면이 합동이다.
③ 각 꼭지점에 면이 4개씩 모여 있다.
▶
④ 꼭지점이 8개 있다.
⑤ 모서리는 12개 있다.
꼭지점이 12개 이다.
[정사면체] ★
크기가 같은 두 정사면체를 한 면이 포개지도록 놓으면 육면체가 된다. 그러나 이 도형은 정육면체가 아니다. 그 이유를 쓰시오. 한 꼭지점에 모이는 면의 개수가 다르다.
한 꼭지점에 모이는 면의 개수가 다르다.
[다면체] ★★★
다음 중 옳지 않은 것은?(정답 2개) ③, ⑤
① 각기둥의 두 밑면은 서로 합동이며 평행하다.
② 각뿔대의 옆면은 사다리꼴이다.
▶
③ 원뿔의 옆면은 이등변삼각형이다.
④ 정다면체의 각 면은 합동인 정다각형이다.
▶
⑤ 원기둥은 다면체이다.
③원뿔의 옆면은 다각형이 아니다.
⑤원기둥의 옆면은 다각형이 아니므로 다면체가 아니다.
[다면체-면의 개수]
다음 다면체 중 면의 개수가 가장 많은 것은? ⑤
① 오각뿔② 사각기둥③ 정육면체
▶
④ 사각뿔대⑤ 정오각기둥
①,②,③,④-6개, ⑤-7개
[정다면체의 종류] ★★★
다면체 가운데 각 면이 모두 합동인 정다각형이고, 각 꼭지점에 모이는 면의 개수는 같은 볼록한 다면체를 정다면체라고 한다. 이 정다면체의 종류에는 다섯 가지가 있는데 다음 표를 보고 ⑴~⑹에 알맞은 답을 쓰시오. (1) 정사각형 (2) 정팔면체
(3) 정오각형 (4) 정삼각형
(5) 3개 (6) 5개
정다면체
정사면체
정육면체
⑵
정12면체
정20면체
면의 모양
정삼각형
⑴
정삼각형
⑶
⑷
한 꼭지점에 모인 면의 개수
3
3
4
⑸
⑹
(1)정사각형 (2)정팔면체 (3)정오각형
(4)정삼각형 (5)3개 (6)5개
[다면체-면] ★
다음 중 면이 삼각형으로 이루어져 있지 않은 다면체는? ⑤
① 삼각뿔② 정이십면체③ 정사면체
▶
④ 정팔면체⑤ 정십이면체
정십이면체의 면은 정오각형이다.
회전체
[회전체] ★★
회전체를 회전축을 포함하는 평면으로 자를 때 생기는 단면에 관한 설명으로 옳지 않은 것은? ②
① 모든 단면들은 서로 합동이다.
▶
② 단면의 모양은 언제나 원이다.
③ 단면에 회전체의 모선이 포함된다.
④ 잘라진 단면들은 넓이가 모두 같다.
⑤ 회전축에 대하여 모두 선대칭도형이다.
단면이 언제나 원은 아니다.
[회전체] ★★★
다음 중 회전체가 아닌 것은? ④
① 원뿔② 원뿔대③ 원기둥
▶
④ 오각기둥⑤ 구
옆면이 다각형인 것은 회전체가 아니다.
[회전체] ★
다음 그림과 같은 직각삼각형을 직선을 축으로 하여 회전시키면 어떤 도형이 생기는지를 쓰시오. 원뿔
직각삼각형의 한 변을 축으로 하여 회전시키면 원뿔이 생긴다. 원뿔
[회전체] ★
다음 그림은 원기둥의 전개도이다. 의 값은? ①
▶
① ② ③
④ ⑤
의 길이는 밑면인 원의 둘레의 길이와 같으므로
[회전체-자른 단면] ★★★
다음은 회전체와 그것을 축을 포함하는 평면으로 자른 단면이 모양을 짝지은 것이다. 옳지 않은 것은? ③
① 구 - 원 ② 반구 - 반원
▶
③ 원뿔 - 직각삼각형 ④ 원기둥 - 직사각형
⑤ 원뿔대 - 등변사다리꼴
원뿔 - 이등변 삼각형
[회전체] ★★
다음 중 직선 을 축으로 회전시킬 때, 다음과 같은 회전체가 되는 것은 어느 것인가? ②
▶
⑤ 는 원뿔대를 자른 단면이다.
[회전체-원뿔] ★
다음 중 원뿔을 자른 단면이 될 수 없는 것은? ⑤
①②
③④
▶
⑤
(1) 정사면체 (2) 3개 (3) 선분 CF
[입체도형]
다음 입체도형 중 서로 평행인 면이 한 쌍도 없는 것은? ⑤
① 사각뿔대② 정팔면체③ 사각기둥
▶
④ 원뿔대⑤ 정사면체
정사면체는 서로 평행인 면이 없다.
[정팔면체] ★
정팔면체에 대한 설명 중 틀린 것은? ④
① 정삼각형으로만 이루어져 있다.
② 모든 면이 합동이다.
③ 각 꼭지점에 면이 4개씩 모여 있다.
▶
④ 꼭지점이 8개 있다.
⑤ 모서리는 12개 있다.
꼭지점이 12개 이다.
[정사면체] ★
크기가 같은 두 정사면체를 한 면이 포개지도록 놓으면 육면체가 된다. 그러나 이 도형은 정육면체가 아니다. 그 이유를 쓰시오. 한 꼭지점에 모이는 면의 개수가 다르다.
한 꼭지점에 모이는 면의 개수가 다르다.
[다면체] ★★★
다음 중 옳지 않은 것은?(정답 2개) ③, ⑤
① 각기둥의 두 밑면은 서로 합동이며 평행하다.
② 각뿔대의 옆면은 사다리꼴이다.
▶
③ 원뿔의 옆면은 이등변삼각형이다.
④ 정다면체의 각 면은 합동인 정다각형이다.
▶
⑤ 원기둥은 다면체이다.
③원뿔의 옆면은 다각형이 아니다.
⑤원기둥의 옆면은 다각형이 아니므로 다면체가 아니다.
[다면체-면의 개수]
다음 다면체 중 면의 개수가 가장 많은 것은? ⑤
① 오각뿔② 사각기둥③ 정육면체
▶
④ 사각뿔대⑤ 정오각기둥
①,②,③,④-6개, ⑤-7개
[정다면체의 종류] ★★★
다면체 가운데 각 면이 모두 합동인 정다각형이고, 각 꼭지점에 모이는 면의 개수는 같은 볼록한 다면체를 정다면체라고 한다. 이 정다면체의 종류에는 다섯 가지가 있는데 다음 표를 보고 ⑴~⑹에 알맞은 답을 쓰시오. (1) 정사각형 (2) 정팔면체
(3) 정오각형 (4) 정삼각형
(5) 3개 (6) 5개
정다면체
정사면체
정육면체
⑵
정12면체
정20면체
면의 모양
정삼각형
⑴
정삼각형
⑶
⑷
한 꼭지점에 모인 면의 개수
3
3
4
⑸
⑹
(1)정사각형 (2)정팔면체 (3)정오각형
(4)정삼각형 (5)3개 (6)5개
[다면체-면] ★
다음 중 면이 삼각형으로 이루어져 있지 않은 다면체는? ⑤
① 삼각뿔② 정이십면체③ 정사면체
▶
④ 정팔면체⑤ 정십이면체
정십이면체의 면은 정오각형이다.
회전체
[회전체] ★★
회전체를 회전축을 포함하는 평면으로 자를 때 생기는 단면에 관한 설명으로 옳지 않은 것은? ②
① 모든 단면들은 서로 합동이다.
▶
② 단면의 모양은 언제나 원이다.
③ 단면에 회전체의 모선이 포함된다.
④ 잘라진 단면들은 넓이가 모두 같다.
⑤ 회전축에 대하여 모두 선대칭도형이다.
단면이 언제나 원은 아니다.
[회전체] ★★★
다음 중 회전체가 아닌 것은? ④
① 원뿔② 원뿔대③ 원기둥
▶
④ 오각기둥⑤ 구
옆면이 다각형인 것은 회전체가 아니다.
[회전체] ★
다음 그림과 같은 직각삼각형을 직선을 축으로 하여 회전시키면 어떤 도형이 생기는지를 쓰시오. 원뿔
직각삼각형의 한 변을 축으로 하여 회전시키면 원뿔이 생긴다. 원뿔
[회전체] ★
다음 그림은 원기둥의 전개도이다. 의 값은? ①
▶
① ② ③
④ ⑤
의 길이는 밑면인 원의 둘레의 길이와 같으므로
[회전체-자른 단면] ★★★
다음은 회전체와 그것을 축을 포함하는 평면으로 자른 단면이 모양을 짝지은 것이다. 옳지 않은 것은? ③
① 구 - 원 ② 반구 - 반원
▶
③ 원뿔 - 직각삼각형 ④ 원기둥 - 직사각형
⑤ 원뿔대 - 등변사다리꼴
원뿔 - 이등변 삼각형
[회전체] ★★
다음 중 직선 을 축으로 회전시킬 때, 다음과 같은 회전체가 되는 것은 어느 것인가? ②
▶
⑤ 는 원뿔대를 자른 단면이다.
[회전체-원뿔] ★
다음 중 원뿔을 자른 단면이 될 수 없는 것은? ⑤
①②
③④
▶
⑤
추천자료
문제해결력 향상을 위한 수학과 교수-학습 과정안
수리수문학(공식모음)
심리이해
플라톤과 아리스토텔레스의 종합적 비교
파넬 제작시 유의사항
수학 체험전
현대 수학의 이해 - 영화 속의 수학
노인 시설의 피난계획에서 건축적으로 고려해야할 사항
지오데식 돔의 설계와 제작 - 지오데식 돔의 설계와 제작, 적은 재료 큰 공간, 생활속의 수학...
기하학 학습, 고지혈증 환자교육 코스웨어설계, 초등학교 과학 편리한 도구 단원 코스웨어설...
삼수선의 정리 수업지도안
수학과 ICT(정보통신기술)활용교육의 목적과 효과, 수학과 ICT(정보통신기술)활용교육의 자료...
오일러의 정리
4차원 영적세계