
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20
-
21
-
22
-
23
-
24
-
25
-
26
-
27
-
28
-
29
-
30
-
31
-
32
-
33
-
34
-
35
-
36
-
37
-
38
-
39
-
40
-
41
-
42
-
43


목차
1 .소 개
1. 1 Communication Theory pp. 11.
1. 2 MATLAB pp. 4
2 .A M
2. 1 AM pp. 82.
2. 2 DSB - SC pp.11
2. 3 VSB pp.14
2. 4 SSB pp.17
3 .F M
3. 1 FM pp.20
4 .DS - SS pp.27
5 .Filter designpp.29
6 .MATLAB source code pp.37
7 .Conclusion pp.45
1. 1 Communication Theory pp. 11.
1. 2 MATLAB pp. 4
2 .A M
2. 1 AM pp. 82.
2. 2 DSB - SC pp.11
2. 3 VSB pp.14
2. 4 SSB pp.17
3 .F M
3. 1 FM pp.20
4 .DS - SS pp.27
5 .Filter designpp.29
6 .MATLAB source code pp.37
7 .Conclusion pp.45
본문내용
gth(t)-1
int_mt(i+1)=int_mt(i)+mt(i)*Ts;
end
figure(1)
subplot(221)
plot(t,mt);
title('Message signal')
xlabel('Time (sec)')
subplot(222)
plot(t,int_mt);
title('Integral of m(t)')
xlabel('Time (sec)')
kf = 10;
St = cos(2*pi*fc*t + 2*pi*kf*int_mt);
subplot(223)
plot(t,St)
title('The modulated signal S(t) when Beta << 1')
xlabel('Time (sec)')
kf = 500;
St = cos(2*pi*fc*t + 2*pi*kf*int_mt);
subplot(224)
plot(t,St)
title('The modulated signal S(t) when Beta > 1')
xlabel('Time (sec)')
figure(2)
kf = 10;
St = cos(2*pi*fc*t + 2*pi*kf*int_mt);
N = 8000;
F = (-N/2:N/2-1)*fs/N;
S = abs(fft(St,N))/(2*80);
S = fftshift(S);
subplot(221)
plot(F,S)
title('Beta<<1, magnitude-spectrum of the modulated signal')
xlabel('Frequency (Hz)')
kf = 500;
St = cos(2*pi*fc*t + 2*pi*kf*int_mt);
N = 8000;
F = (-N/2:N/2-1)*fs/N;
S = abs(fft(St,N))/(2*80);
S = fftshift(S);
subplot(222)
plot(F,S)
title('Beta>1, magnitude-spectrum of the modulated signal')
xlabel('Frequency (Hz)')
kf = 10;
St = cos(2*pi*fc*t + 2*pi*kf*int_mt);
subplot(223)
psd(St,[],1000)
title('PSD of S(t) when Beta << 1')
kf = 500;
St = cos(2*pi*fc*t + 2*pi*kf*int_mt);
subplot(224)
psd(St,[],1000)
title('PSD of S(t) when Beta > 1')
6. 7 Low-Pass filter
clear all
close all
N = 64;
fc = 0.3;
k = 1;
t = ([0:N-1]-(N-1)/2);
f = (1/N)*[-N/2:N/2-1];
h_lpf = k*sin(2*pi*fc*t)./(pi*t);
if rem(N,2) == 0
else
h_lpf((N+1)/2)=2*fc;
end
subplot(211)
plot(t,h_lpf)
xlabel('Time (sec)')
ylabel('h_lpf')
title('Low-Pass filter impulse response')
LPF=fftshift(abs(fft(h_lpf)));
subplot(212)
plot(f,LPF)
xlabel('Frequency (Hz)')
ylabel('Amplitude')
title('Low-Pass filter frequency response')
6. 8 High-Pass filter
clear all
close all
N = 64;
fc = 0.3;
k = 1;
t = ([0:N-1]-(N-1)/2);
f = (1/N)*[-N/2:N/2-1];
h_hpf = (-1).^t*k.*sin(2*pi*(0.5-fc)*t)./(pi*t);
if rem(N,2) == 0
else
h_hpf((N+1)/2)=2*(0.5-fc);
end
subplot(211)
plot(t,h_hpf)
xlabel('Time (sec)')
ylabel('h_hpf')
title('High-Pass filter impulse response')
HPF=fftshift(abs(fft(h_hpf)));
subplot(212)
plot(f,HPF)
xlabel('Frequency (Hz)')
ylabel('Amplitude')
title('High-Pass filter frequency response')
6. 9 Band-Pass filter
clear all
close all
N = 64;
fu = 0.3;
fl = 0.2;
k = 1;
f = (1/N)*[-N/2:N/2-1];
l = find( ((f>=fl)&(f<=fu))|((f>=-fu)&(f<=-fl)));
BPF = zeros(1,N);
BPF(l) = ones(1,length(l))
h_bpf=abs(ifft(BPF));
subplot(211)
plot(h_bpf)
xlabel('Time (sec)')
ylabel('h_bpf')
title('Band-Pass filter impulse response')
subplot(212)
plot(f,BPF)
xlabel('Frequency (Hz)')
ylabel('Amplitude')
title('Band-Pass filter frequency response')
6. 10 Band-stop filter
clear all
close all
N = 64;
fu = 0.3;
fl = 0.2;
k = 1;
f = (1/N)*[-N/2:N/2-1];
l = find( ((f>=fl)&(f<=fu))|((f>=-fu)&(f<=-fl)));
BPF = zeros(1,N);
BPF(l) = ones(1,length(l))
BSF = k*(1-BPF);
h_bsf=abs(ifft(BSF));
subplot(211)
plot(h_bsf)
xlabel('Time (sec)')
ylabel('h_bpf')
title('Band-stop filter impulse response')
subplot(212)
plot(f,BSF)
xlabel('Frequency (Hz)')
ylabel('Amplitude')
title('Band-stop filter frequency response')
int_mt(i+1)=int_mt(i)+mt(i)*Ts;
end
figure(1)
subplot(221)
plot(t,mt);
title('Message signal')
xlabel('Time (sec)')
subplot(222)
plot(t,int_mt);
title('Integral of m(t)')
xlabel('Time (sec)')
kf = 10;
St = cos(2*pi*fc*t + 2*pi*kf*int_mt);
subplot(223)
plot(t,St)
title('The modulated signal S(t) when Beta << 1')
xlabel('Time (sec)')
kf = 500;
St = cos(2*pi*fc*t + 2*pi*kf*int_mt);
subplot(224)
plot(t,St)
title('The modulated signal S(t) when Beta > 1')
xlabel('Time (sec)')
figure(2)
kf = 10;
St = cos(2*pi*fc*t + 2*pi*kf*int_mt);
N = 8000;
F = (-N/2:N/2-1)*fs/N;
S = abs(fft(St,N))/(2*80);
S = fftshift(S);
subplot(221)
plot(F,S)
title('Beta<<1, magnitude-spectrum of the modulated signal')
xlabel('Frequency (Hz)')
kf = 500;
St = cos(2*pi*fc*t + 2*pi*kf*int_mt);
N = 8000;
F = (-N/2:N/2-1)*fs/N;
S = abs(fft(St,N))/(2*80);
S = fftshift(S);
subplot(222)
plot(F,S)
title('Beta>1, magnitude-spectrum of the modulated signal')
xlabel('Frequency (Hz)')
kf = 10;
St = cos(2*pi*fc*t + 2*pi*kf*int_mt);
subplot(223)
psd(St,[],1000)
title('PSD of S(t) when Beta << 1')
kf = 500;
St = cos(2*pi*fc*t + 2*pi*kf*int_mt);
subplot(224)
psd(St,[],1000)
title('PSD of S(t) when Beta > 1')
6. 7 Low-Pass filter
clear all
close all
N = 64;
fc = 0.3;
k = 1;
t = ([0:N-1]-(N-1)/2);
f = (1/N)*[-N/2:N/2-1];
h_lpf = k*sin(2*pi*fc*t)./(pi*t);
if rem(N,2) == 0
else
h_lpf((N+1)/2)=2*fc;
end
subplot(211)
plot(t,h_lpf)
xlabel('Time (sec)')
ylabel('h_lpf')
title('Low-Pass filter impulse response')
LPF=fftshift(abs(fft(h_lpf)));
subplot(212)
plot(f,LPF)
xlabel('Frequency (Hz)')
ylabel('Amplitude')
title('Low-Pass filter frequency response')
6. 8 High-Pass filter
clear all
close all
N = 64;
fc = 0.3;
k = 1;
t = ([0:N-1]-(N-1)/2);
f = (1/N)*[-N/2:N/2-1];
h_hpf = (-1).^t*k.*sin(2*pi*(0.5-fc)*t)./(pi*t);
if rem(N,2) == 0
else
h_hpf((N+1)/2)=2*(0.5-fc);
end
subplot(211)
plot(t,h_hpf)
xlabel('Time (sec)')
ylabel('h_hpf')
title('High-Pass filter impulse response')
HPF=fftshift(abs(fft(h_hpf)));
subplot(212)
plot(f,HPF)
xlabel('Frequency (Hz)')
ylabel('Amplitude')
title('High-Pass filter frequency response')
6. 9 Band-Pass filter
clear all
close all
N = 64;
fu = 0.3;
fl = 0.2;
k = 1;
f = (1/N)*[-N/2:N/2-1];
l = find( ((f>=fl)&(f<=fu))|((f>=-fu)&(f<=-fl)));
BPF = zeros(1,N);
BPF(l) = ones(1,length(l))
h_bpf=abs(ifft(BPF));
subplot(211)
plot(h_bpf)
xlabel('Time (sec)')
ylabel('h_bpf')
title('Band-Pass filter impulse response')
subplot(212)
plot(f,BPF)
xlabel('Frequency (Hz)')
ylabel('Amplitude')
title('Band-Pass filter frequency response')
6. 10 Band-stop filter
clear all
close all
N = 64;
fu = 0.3;
fl = 0.2;
k = 1;
f = (1/N)*[-N/2:N/2-1];
l = find( ((f>=fl)&(f<=fu))|((f>=-fu)&(f<=-fl)));
BPF = zeros(1,N);
BPF(l) = ones(1,length(l))
BSF = k*(1-BPF);
h_bsf=abs(ifft(BSF));
subplot(211)
plot(h_bsf)
xlabel('Time (sec)')
ylabel('h_bpf')
title('Band-stop filter impulse response')
subplot(212)
plot(f,BSF)
xlabel('Frequency (Hz)')
ylabel('Amplitude')
title('Band-stop filter frequency response')
추천자료
정보통신윤리에 대한 고찰과 정보사회에서 야기되는 문제사례
정보통신산업의 표준화 발전방향 연구
신세대 대상 이동통신 TV광고언어의 특징과 비교연구
통신 언어의 구조와 대면 대화와의 차이점 고찰
국내 이동통신 시장의 마케팅 전략
3세대 이동통신시장에서의 ktf VS skt 경쟁 기업분석
이동 통신 채널과 전파 특성 & IMT-2000의 이해
방송의역사와 통신의역사 및 방통융합
방송과 통신의 융합에 따른 매체환경변화 현상 고찰-기술적, 제도적, 사회■문화적 관점-
3세대 이동통신사장에서의 SKT와 KT의 경쟁기업 분석
컴퓨터 통신언어
[정보통신 실습] 중첩의 원리 (principle of superposition) : 중첩의 원리를 실험적으로 확...
방송 통신 대학교 3학년 과제물 인간과 교육