|
포사체의 수평도달거리의 이론값에 가까워지며, 실제 실험 상태에서는 공기의 저항이 있는 실험장에서 실험을 했음을 알 수 있었다.
※실험오차부분에서 와가 잘못된 식이라 생각하여 와, 로 수정하였습니다. 상대 오차는 |참값 - 실험값|/참
|
- 페이지 5페이지
- 가격 1,000원
- 등록일 2011.03.07
- 파일종류 한글(hwp)
- 참고문헌 없음
- 최근 2주 판매 이력 없음
|
|
수평도달거리는 공기 저항이 없는 공간에서의 수평도달거리보다 작은 값을 갖게 된다. 또한 체공시간이 길어질수록 구슬이 수평방향으로 도달하는 거리 또한 증가한다는 사실도 알게 되었다. 이 포사체 운동의 실험은 실험 매뉴얼에 나와 있
|
- 페이지 3페이지
- 가격 800원
- 등록일 2011.02.07
- 파일종류 한글(hwp)
- 참고문헌 없음
- 최근 2주 판매 이력 없음
|
|
도달거리를 알 수가 있다. 물론, 실험결과에 보이듯이 마찰을 고려한 경우의 이론식의 값이 실제 값에 가까움을 알 수 있다. 그러므로 발사한 높이를 아는 것보다 체공시간을 알 경우 포사체의 실제 이동거리를 근접하게 추측할 수 있다.
|
- 페이지 6페이지
- 가격 1,000원
- 등록일 2007.03.26
- 파일종류 한글(hwp)
- 참고문헌 없음
- 최근 2주 판매 이력 없음
|
|
수평으로 맞췄기 때문에, 포사체 발사 장치와의 평행을 고려하지 못했기 때문이라고 결론 내었다. 장전을 2단으로 했을 때가 1단으로 했을 때보다 초속도최고점의 높이수평도달거리최고점 도달 시간에서 높은 수치를 기록하였다. 각도를 크
|
- 페이지 4페이지
- 가격 1,000원
- 등록일 2012.02.23
- 파일종류 한글(hwp)
- 참고문헌 없음
- 최근 2주 판매 이력 없음
|
|
포사체 운동에서 발사 지점부터 최고점, 최고점부터 반대편의 발사 지점 높이, 반대편의 발사 지점 높이부터 바닥에 도달 할 때까지로 나누어 각각의 거리에 대해 계산하여 라는 식을 얻을 수 있다. 수평도달거리(L) 측정값과 위 식의 계산값
|
- 페이지 4페이지
- 가격 1,000원
- 등록일 2015.02.06
- 파일종류 한글(hwp)
- 참고문헌 없음
- 최근 2주 판매 이력 없음
|