직류전동기의 특성 (DC모터의 특성)
본 자료는 8페이지 의 미리보기를 제공합니다. 이미지를 클릭하여 주세요.
닫기
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
해당 자료는 8페이지 까지만 미리보기를 제공합니다.
8페이지 이후부터 다운로드 후 확인할 수 있습니다.

소개글

직류전동기의 특성 (DC모터의 특성)에 대한 보고서 자료입니다.

목차

●직류전동기의 개념

●직류전동기의 회전원리

●직류전동기의 구조(용어)

●직류전동기의 분류

●직류전동기의 특성계산식

●직류전동기의 종류별 특성

●직류전동기 손실과 효율, 정격, 속도변동률

●DC모터의 가변속 제어법

●PID제어

●단순 ON/OFF제어

●비례제어

●PI제어

●미분제어와 PID제어

본문내용

여 모터의 구동전압을 변화시키면 속도를 가변으로 할 수 있는 것이다.
이 구동전압을 변화시키는 방법으로 아날로그 방식과 펄스폭 변조방식의 두 가지 방법이 있다. 다음은 각 방식과 특징에 대해 설명한다.
① 아날로그 방식의 가변속 제어
직접 구동전압 그 자체를 변화시키는 것으로, 기본회로는 아래 그림과 같다.
즉, 트랜지스터로 전압 dropper를 구성하고, 컬렉터 이미터간의 드롭 전압을 바꿈으로써 모터에 가해지는 구동전압을 가변으로 한다. 이 기본원리에 의해, 드롭퍼 전압이 그대로 열로 되어 손실로 되며, 특히 저속으로 할 때, 전력 사용 효율이 나빠지고 만다. 이 손실로 인해 발생하는 열대책을 위해, 큰 방열판을 필요로 하기 때문에 전체가 대형으로 되고 만다. 그러나, 소형 모터이고, 게다가 속도의 가변폭이 작아도 좋은 경우에는 손실을 작게 할 수 있다는 점과, 제어회로가 간단하기 때문에 흔히 사용되고 있다.
② PWM(펄스폭 변조)방식
PWM 방식은 결과적으로는 구동전압을 바꾸고 있는 것과 같은 효과를 내고 있지만, 그 방법이 펄스폭에 따르고 있으므로 펄스폭 변조(PWM: Pulse Width Modulation)라 부르고 있다. 구체적으로는 모터 구동전원을 일정 주기로 On/Off 하는 펄스 형상으로 하고, 그 펄스의 duty비(On 시간과 Off 시간의 비)를 바꿈으로써 실현하고 있다. 이것은 DC 모터가 빠른 주파수의 변화에는 기계 반응을 하지 않는다는 것을 이용하고 있다. 기본회로는 아랫 그림과 같으며, 그림에서 트랜지스터를 일정시간 간격으로 On/off하면 구동전원이 On/Off 되는 것이다.
이 펄스 형상의 전압으로 DC 모터를 구동했을 때의 실제 모터에 가해지는 전압 파형은 아랫 그림과 같이 되며, 평균전력, 전압을 생각하면 외관상, 구동전압이 변화하고 있는 것이다.
여기서 중요한 기능을 담당하고 있는 것이 위의 회로도에 있는 다이오드이며, 일반적인 전원용 다이오드를 사용하지만, 그 동작 기능에 의해 flywheel diode라 부르고 있다. 즉, 트랜지스터가 Off로 되어 있는 동안, 모터의 코일에 축적된 에너지를 전류로 흘리는 작용을 한다(회생전류라 부른다).이 상태를 그림으로 나타내면 아래 그림과 같이 되며, 이 플라이휠 효과에 의해, 모터에 흐르는 전류는 트랜지스터가 Off로 되어 있는 동안에도 쉬지 않고 흐르고 있는 것처럼 보이게 되며, 평균전류도 On시의 전류와 이 회생전류의 합으로 된다
● PID제어
자동제어 방식 가운데서 가장 흔히 이용되는 제어방식으로 PID 제어라는 방식이 있다. 이 PID란,
P: Proportinal(비례)
I: Integral(적분)
D: Differential(미분)
의 3가지 조합으로 제어하는 것으로 유연한 제어가 가능해진다.
● 단순 ON/OFF 제어
단순한 On/Off 제어의 경우에는 제어 조작량은 0%와 100% 사이를 왕래하므로 조작량의 변화가 너무 크고, 실제 목표값에 대해 지나치게 반복하기 때문에, 목표값의 부근에서 凸凹를 반복하는 제어로 되고 만다. 이 모양을 그림으로 나타내면 아랫 그림과 같이 된다.
● 비례제어
이에 대해 조작량을 목표값과 현재 위치와의 차에 비례한 크기가 되도록 하며, 서서히 조절하는 제어 방법이 비례 제어라고 하는 방식이다. 이렇게 하면 목표값에 접근하면 미묘한 제어를 가할 수 있기 때문에 미세하게 목표값에 가까이 할 수 있다.이 모양은 아랫 그림과 같이 나타낼 수 있다.
● PI제어
비례 제어로 잘 제어할 수 있을 것으로 생각하겠지만, 실제로는 제어량이 목표값에 접근하면 문제가 발생한다. 그것은 조작량이 너무 작아지고, 그 이상 미세하게 제어할 수 없는 상태가 발생한다. 결과는 목표 값에 아주 가까운 제어량의 상태에서 안정한 상태로 되고 만다. 이렇게 되면 목표 값에 가까워지지만, 아무리 시간이 지나도 제어량과 완전히 일치하지 않는 상태로 되고 만다. 이 미소한 오차를 ”잔류편차"라고 한다. 이 잔류편차를 없애기 위해 사용되는 것이 적분 제어이다. 즉, 미소한 잔류편차를 시간적으로 누적하여, 어떤 크기로 된 곳에서 조작량을 증가하여 편차를 없애는 식으로 동작시킨다. 이와 같이, 비례 동작에 적분 동작을 추가한 제어를 "PI 제어"라 부른다. 이것을 그림으로 나타내면 아래 그림과 같이 된다.
● 미분제어와 PID제어
PI 제어로 실제 목표값에 가깝게 하는 제어는 완벽하게 할 수 있다. 그러나 또 하나 개선의 여지가 있다. 그것은 제어 응답의 속도이다. PI 제어에서는 확실히 목표값으로 제어할 수 있지만, 일정한 시간(시정수)이 필요하다. 이때 정수가 크면 외란이 있을 때의 응답 성능이 나빠진다. 즉, 외란에 대하여 신속하게 반응할 수 없고, 즉시 원래의 목표값으로는 돌아갈 수 없다는 것이다.그래서, 필요하게 된 것이 미분 동작이다. 이것은 급격히 일어나는 외란에 대해 편차를 보고, 전회 편차와의 차가 큰 경우에는 조작량을 많이 하여 기민하게 반응하도록 한다.이 전회와의 편차에 대한 변화차를 보는 것이 "미분"에 상당한다. 이 미분동작을 추가한 PID 제어의 경우, 제어 특성은 아랫 그림과 같이 된다. 이것으로 알 수 있듯이 처음에는 상당히 over drive하는 듯이 제어하여, 신속히 목표값이 되도록 적극적으로 제어해 간다.
-------------------------------------------------------------
<참고자료>
- 서보기기(김규탁, 안호균, 홍정표)
- 전자기기(정득영/ 보문당)
- 전력전자공학(천희영/ 청문각)
- 전자기학(Marshall & skitk 공저/ 청문각)
- 모터제어기술 : 메커트로닉스를 위한(이왕헌/ 성안당)
- http://www.153korea.com/study/stv_dcmotor.html#pid
- http://esc.cl.hangkong.ac.kr/%7Eavicom/98fair/project1/html
- http://stmail.chosun.ac.kr/%7Ev2a/hs2000.htm
- http://www.autocontrol.co.kr/magazine/0006/148-152.htm
  • 가격3,000
  • 페이지수23페이지
  • 등록일2005.06.18
  • 저작시기2005.06
  • 파일형식한글(hwp)
  • 자료번호#303044
본 자료는 최근 2주간 다운받은 회원이 없습니다.
청소해
다운로드 장바구니