|
문제 7.(d)
가우스 소거법에서 피봇팅과 스캘링을 사용하지 않은 경우
********** Original Matrix **********
5.000000 3.000000 1.000000 2.000000
1.000000 -4.000000 8.000000 -2.000000
10.000000 -6.000000 5.000000 -8.000000
************ Gauss-Elimination ************
5.000000 3.000000 1.000000 2.000
|
- 페이지 33페이지
- 가격 12,600원
- 등록일 2013.12.16
- 파일종류 한글(hwp)
- 참고문헌 있음
- 최근 2주 판매 이력 없음
|
|
gauss
Ax=B의 형태의 방정식을 가우스소거법으로 풀기
A행렬을 입력하시오: A=[70 1 0;60 -1 1;40 0 -1]
B행렬을 입력하시오: B=[636;518;307]
연산을 시작합니다.
연산을 종료합니다.
ans =
8.59411764705882
34.41176470588233
36.76470588235292
전체 pivoting을 한 횟수
==>
|
- 페이지 4페이지
- 가격 500원
- 등록일 2006.05.18
- 파일종류 한글(hwp)
- 참고문헌 없음
- 최근 2주 판매 이력 없음
|
|
Gauss 소거법을 이용한 선형방정식의 풀이~!! >> \\n\\n\");
printf(\"\\n본래 행렬 값 \\n\");//본래 행렬 값을 표현한다.
for(j=0;j<4;j++)
{
for(k=0;k<4;k++)
{
printf(\"%lf \",A[j][k]);
}
printf(\"\\n\");
}
printf(\"\\n\");
for(i=1;i<4;i++) // 가우스 소거법을 실행한다
|
- 페이지 8페이지
- 가격 1,500원
- 등록일 2008.04.04
- 파일종류 한글(hwp)
- 참고문헌 있음
- 최근 2주 판매 이력 없음
|
|
가우스 소거법
clear all
clc
fprintf(\'Ax=B의 형태의 방정식을 가우스 소거법으로 풀기 \\n\')
fprintf(\' 1x + 2y + 3z = 1 \\n 11x + 24y + 37z = 7 \\n 121x + 243y + 364z = 120 \\n\')
A=[1, 2, 3; 11, 24, 37; 121, 243, 364];
B=[1; 7; 120];
fprintf(\'A=[1, 2, 3; 11, 24, 37; 121, 243, 364] \\n B=[1; 7;
|
- 페이지 28페이지
- 가격 3,000원
- 등록일 2011.12.24
- 파일종류 한글(hwp)
- 참고문헌 없음
- 최근 2주 판매 이력 없음
|
|
음과 같다.
이제 행렬 B에 기본행 연산을 적용하여 소거 행제형으로 변환하자.
소거행제형으로 변환된 마지막 행렬을 살펴보면 자유변수는 없고
를 의미하므로 직접 해를 구하게 된다.
|
- 페이지 1페이지
- 가격 1,000원
- 등록일 2009.05.13
- 파일종류 한글(hwp)
- 참고문헌 없음
- 최근 2주 판매 이력 없음
|