|
법에 비해 그 과정이 오래 걸리므로 이것은 알고자 하는 값이 적을 경우만 사용하여야 할 것이다. LU분해법은 때에 따라 전혀 다른 값을 보여주고 있다. 이는 가우스 소거법이나 가우스 조던법에 비하여 좀더 많은 마무리 오차가 발생하는 것
|
- 페이지 33페이지
- 가격 12,600원
- 등록일 2013.12.16
- 파일종류 한글(hwp)
- 참고문헌 있음
- 최근 2주 판매 이력 없음
|
|
법에 비해 그 과정이 오래 걸리므로 이것은 알고자 하는 값이 적을 경우만 사용하여야 할 것이다. LU분해법은 때에 따라 전혀 다른 값을 보여주고 있다. 이는 가우스 소거법이나 가우스 조던법에 비하여 좀더 많은 마무리 오차가 발생하는 것
|
- 페이지 33페이지
- 가격 3,300원
- 등록일 2013.12.06
- 파일종류 한글(hwp)
- 참고문헌 없음
- 최근 2주 판매 이력 없음
|
|
0, 0; 0, 1, 0; 0, 0, 1]; %역행렬구하기
D=L^(-1)*E;
fprintf('\n [d]행렬 \n');
disp(D);
fprintf('\n A함수의 역행렬 \n');
Ainv=U^(-1)*D;
disp(Ainv); 1.크래머규칙
2.가우스소거법
3.LU분해법
4.LU분해법으로 역행렬구하기
5.소스코드
|
- 페이지 28페이지
- 가격 3,000원
- 등록일 2011.12.24
- 파일종류 한글(hwp)
- 참고문헌 없음
- 최근 2주 판매 이력 없음
|
|
LU분해를 이용하자.
역행렬을 LU분해를 이용해서 구하는 방법은 다음과 같다.
각 단계를 계산해보자.
따라서 이다.
물론 자명하게 이다.
11.12 a) system은 다음과 같다.
가우스 소거법을 이용해서 역행렬을 구하면 다음과 같다.
해를 구하면 다음과
|
- 페이지 6페이지
- 가격 3,000원
- 등록일 2011.07.20
- 파일종류 한글(hwp)
- 참고문헌 없음
- 최근 2주 판매 이력 없음
|
|
가우스소거법
1) 선형연립방정식
2) 가우스소거법
①한 행에 k배하여 다른 행에 더함
②두 행을 서로 바꿈
③한 행에 0이 아닌 상수를 곱한다
①+②+③을 통해 A를 ‘삼각형태’ 행렬(에쉴론 행렬)로 변환
Ⅴ. 수학 방정식의 수치 해법
1. 방정식
|
- 페이지 10페이지
- 가격 5,000원
- 등록일 2010.02.03
- 파일종류 한글(hwp)
- 참고문헌 있음
- 최근 2주 판매 이력 없음
|