|
0, 0; 0, 1, 0; 0, 0, 1]; %역행렬구하기
D=L^(-1)*E;
fprintf('\n [d]행렬 \n');
disp(D);
fprintf('\n A함수의 역행렬 \n');
Ainv=U^(-1)*D;
disp(Ainv); 1.크래머규칙
2.가우스소거법
3.LU분해법
4.LU분해법으로 역행렬구하기
5.소스코드
|
- 페이지 28페이지
- 가격 3,000원
- 등록일 2011.12.24
- 파일종류 한글(hwp)
- 참고문헌 없음
- 최근 2주 판매 이력 없음
|
|
LU분해를 이용하자.
역행렬을 LU분해를 이용해서 구하는 방법은 다음과 같다.
각 단계를 계산해보자.
따라서 이다.
물론 자명하게 이다.
11.12 a) system은 다음과 같다.
가우스 소거법을 이용해서 역행렬을 구하면 다음과 같다.
해를 구하면 다음과
|
- 페이지 6페이지
- 가격 3,000원
- 등록일 2011.07.20
- 파일종류 한글(hwp)
- 참고문헌 없음
- 최근 2주 판매 이력 없음
|
|
소거법
<n의 값으로 4를 입력하고 원소들을 입력함>
Ⅰ-3. 결 과 - 가우스 조르단 법
- n값은 4로 하고 행렬의 원소들은 위의 가우스 소거법에서 사용한 원소들을 그대로 데이터파일에 저장함.
<데이터파일>
<실행결과>
- 역행렬을 구
|
- 페이지 32페이지
- 가격 3,000원
- 등록일 2011.03.23
- 파일종류 한글(hwp)
- 참고문헌 없음
- 최근 2주 판매 이력 없음
|
|
법에 비해 그 과정이 오래 걸리므로 이것은 알고자 하는 값이 적을 경우만 사용하여야 할 것이다. LU분해법은 때에 따라 전혀 다른 값을 보여주고 있다. 이는 가우스 소거법이나 가우스 조던법에 비하여 좀더 많은 마무리 오차가 발생하는 것
|
- 페이지 33페이지
- 가격 12,600원
- 등록일 2013.12.16
- 파일종류 한글(hwp)
- 참고문헌 있음
- 최근 2주 판매 이력 없음
|
|
법에 비해 그 과정이 오래 걸리므로 이것은 알고자 하는 값이 적을 경우만 사용하여야 할 것이다. LU분해법은 때에 따라 전혀 다른 값을 보여주고 있다. 이는 가우스 소거법이나 가우스 조던법에 비하여 좀더 많은 마무리 오차가 발생하는 것
|
- 페이지 33페이지
- 가격 3,300원
- 등록일 2013.12.06
- 파일종류 한글(hwp)
- 참고문헌 없음
- 최근 2주 판매 이력 없음
|