[수학 석사 논문] 펠 방정식의 서로 다른 두가지 풀이법(연분수를 이용한 풀이, Chakravala 풀이법) 소개 및 증명
본 자료는 6페이지 의 미리보기를 제공합니다. 이미지를 클릭하여 주세요.
닫기
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
해당 자료는 6페이지 까지만 미리보기를 제공합니다.
6페이지 이후부터 다운로드 후 확인할 수 있습니다.

소개글

[수학 석사 논문] 펠 방정식의 서로 다른 두가지 풀이법(연분수를 이용한 풀이, Chakravala 풀이법) 소개 및 증명에 대한 보고서 자료입니다.

목차

Ⅰ. 연구대상과 증명순서

Ⅱ. 증명 과정
1. 연분수 전개를 통한펠 방정식 풀이 증명
2. Chakravala 방법을 통한 펠 방정식 풀이 증명

본문내용

3. 결론
증명 과정을 통해 펠 방정식에 대한 두가지 풀이법이 모두 제대로 실행된다는 것을 확인하였다. 다만 연분수를 이용한 풀이법이 Chakravala를 이용한 풀이법에 비해 훨 씬 더 응용되기 쉽고, 따라서 더욱 연구할 가치가 있다고 생각된다. 다만 Chakravala 방법이 나온 시점이 지금으로부터 1000년 전이었다는 점을 감안해보면, Chakravala 방법을 찾아내어, 펠 방정식을 풀었던 고대 인도 수학자들이 얼마나 뛰어났는지 짐작 해 볼 수 있을 것이다. D가 61일 경우 (1766319049,226153980)을 최소해로 갖는 다는 점을 생각해 볼 때, 이 펠 방정식을 일반적으로 단순한 추측에 의해 푼다는 것 은 말이 되지 않는다. 그런 점에서 무리수로의 무한한 접근을 통한 방법으로, 한쪽은 최소값을 갖는 갱신을 통해, 한쪽은 연분수를 통해, 해를 찾아내는 이런 놀라운 방법 을 찾아낸 고대 인도의 수학자와, 18세기 수학자에게 경의를 표한다.

키워드

  • 가격4,000
  • 페이지수19페이지
  • 등록일2020.11.23
  • 저작시기2013.2
  • 파일형식아크로뱃 뷰어(pdf)
  • 자료번호#1140824
본 자료는 최근 2주간 다운받은 회원이 없습니다.
청소해
다운로드 장바구니